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Abstract

This paper establishes the inferential theory for the least squares estimation of large factor

models with missing data. We propose a unified framework for asymptotic analysis of factor

models that covers a wide range of missing patterns, including heterogenous random missing,

selection on covariates/factors/loadings, block/staggered missing, mixed frequency and ragged

edge. We establish the average convergence rates of the estimated factor space and loading space,

the limit distributions of the estimated factors and loadings, as well as the limit distributions

of the estimated average treatment effects and the parameter estimates in the factor-augmented

regressions. These results allow us to impute the unbalanced panel appropriately or make inference

for the heterogenous treatment effects. For computation, we can use the nuclear norm regularized

estimator as the initial value for the EM algorithm and iterate until convergence. Empirically, we

apply our method to test the average treatment effects of partisan alignment on grant allocation

in UK.
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1 Introduction

The missing data issue in large factor models has gained considerable interest recently in various

strands of the literature, including matrix completion, causal inference and factor analysis with

unbalanced panel. See Banbura and Modugno (2014), Athey, Bayati, Doudchenko, Imbens and

Khosravi (2021), Bai and Ng (2021), Jin, Miao and Su (2021), Chernozhukov, Hansen, Liao and

Zhu (2023), Xiong and Pelger (2023), among others. The common objective of this literature is to

estimate the factors and loadings consistently and establish the corresponding asymptotic properties.

The difference is that depending on the targeted applications, the literature consider different missing

patterns and different estimation algorithms. Although these methods are practically useful, the

connections between them are unclear. Moreover, these methods are all closely related to the least

squares estimation using the observed data, but the asymptotic theory for the least squares estimation

itself is still unclear.

This paper studies the least squares estimation and develops a unified inferential theory for

factor models with missing data that handles completely random heterogenous missing, selection on

covariates/factors/loadings, block/staggered missing, mixed frequency, ragged edge and some other

patterns in a single framework. These missing patterns include all patterns studied in the above

papers and also some new patterns. We establish the average convergence rates of the estimated

factor space and loading space, the limit distributions of the estimated factors and loadings, the limit

distributions of linear combinations of the elements of the low rank matrix, and the limit distributions

of the parameter estimates in the factor-augmented regressions, as  (the number of units) and 

(the number of time periods) tend to infinity jointly. These results generalize those in Bai (2003)

and Bai and Ng (2006) to factor models under general missing data patterns.

In terms of estimation, since principal component analysis (PCA) is no longer applicable under

random missing, we propose to use the EM algorithm with the nuclear norm regularized estimator

(NN) as the initial value and coin our estimator as a nuclear norm EM estimator (NN-EM). Since

the EM algorithm is guaranteed to converge to local maximum (or minimum) and the nuclear norm

regularized estimator is consistent and easy to compute, the proposed NN-EM algorithm is guaranteed

to converge to the least squares solution. The EM algorithm is always a popular choice to handle

missing data for factor models since Stock and Watson (2002). Nevertheless, it is unclear whether

it always converges to the global maximum (minimum), and under what missing patterns the EM

estimator is asymptotically valid, except for the homogenous random missing case studied by Jin et

al. (2021). Our results show that actually the estimator calculated by the EM algorithm has the
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same asymptotic properties as the complete data case under a wide range of missing patterns, as

long as the initial estimator is consistent on average in terms of Frobenius norm.

1.1 Intuition

Our asymptotic theory is built on the fact that the Hessian matrix for the objective function of

the factor model is asymptotically diagonal and the tensor of the third order derivatives is sparse.

More specifically, the diagonal elements (blocks) of the Hessian are of order () or ( ) while

the nondiagonal elements (blocks) are of order (1). This ensures that the estimator of a fixed

dimensional target parameter is insensitive to the estimation errors of the remaining high dimensional

parameters. Moreover, we show that the estimation errors in the least squares estimators of the factors

and loadings are small enough on average. This, in conjunction with the asymptotically diagonal

Hessian matrix, implies that the asymptotic distributions of the estimated factors (resp., loadings)

are the same as if the loadings (resp., factors) were known, which is also observed in Bai’s (2003)

theory with complete data.

Since the complete data case can be considered as a special case of factor models with missing

data, our asymptotic theory also explains Bai’s (2003) results from the perspective of approximately

diagonal Hessian. In fact, the general idea of diagonalization/orthogonality has been existing in the

literature for a long time; see, e.g., Neyman (1979), Cox and Reid (1987), Lancaster (2002), Belloni,

Chernozhukov and Hansen (2014), Belloni, Chernozhukov, Fernández-Val and Hansen (2017). How-

ever, the factor model literature rarely realizes the asymptotic diagonality structure in the Hessian

and focuses almost entirely on the eigen-decomposition approach as pioneered by Bai (2003) with an

exception by Wang (2022) who considers quasi-maximum likelihood estimation of nonlinear factor

models. Almost all asymptotic analyses are explicitly or implicitly based on Bai’s (2003) decompo-

sition of the estimation error.1 Unfortunately, Bai’s (2003) decomposition is no longer applicable for

factor models under more general setup, which includes the linear factor model with missing values

studied here and nonlinear factor models with or without missing values. We show that the special

structures in the Hessian and the third order derivative tensor enable us to go beyond the framework

of Bai (2003) and derive a novel decomposition expression.

1.2 Related literature and contributions of this paper

First, this paper is closely related to the burgeoning matrix completion literature. Earlier works in this

literature mainly focus on average (esp. Frobenius norm) convergence rate of the recovered missing

1See equation (A.1) in the Appendix A of Bai (2003).
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values under homogenous or limited heterogenous random missing;2 see Candes and Plan (2010),

Koltchinskii, Lounici and Tsybakov (2011), Negahban and Wainwright (2011, 2012), Koltchinskii

(2011), and Rohde and Tsybakov (2011), among others. Motivated by empirical applications in

recommendation systems, causal inference and many social science studies, recent developments

mainly focus on the derivation of the accurate convergence rates or asymptotic distributions for the

estimators of elements or eigenvectors of certain low rank matrix in the context of heterogenous

random missing or nonrandom missing. See Schnabel, Swaminathan, Singh, Chandak and Joachims

(2016), Ma and Chen (2019), Sportisse, Boyer and Josse (2020), Athey et al. (2021), Bhattacharya

and Chatterjee (2022), Zhu, Wang and Samworth (2022), Agarwal, Dahleh, Shah and Shen (2023)

for heterogenous/nonrandom missing; see Chen, Fan, Ma and Yan (2019), Xia and Yuan (2021)

and Chernozhukov et al. (2023) for asymptotic distribution results. Due to the convex nature of

the nuclear norm, the nuclear norm regularization (NNR) approach has become one of the most

popular approaches in the literature (Mazumder, Hastie and Tibshirani (2010)). However, due to

the shrinkage bias caused by the nuclear norm regularization and the lack of explicit analytical

expression for the estimator, post NNR inference is a difficult open question. Chen et al. (2019)

and Xia and Yuan (2021) tackle this issue under the assumption of homogenous missing across both

cross sectional and time dimensions, while Chernozhukov et al. (2023) allow heterogenous missing

across either cross section dimension or time dimension, but not both. For more general missing

patterns, e.g., where missing is heterogenous across both cross section and time dimensions or we

have staggered missing, post regularization inference remains unknown.

In this paper, we provide a solution for post regularization inference under very general missing

patterns, including heterogenous missing over both cross section and time dimensions, selection on

covariates/factors/loadings, block/staggered missing, mixed frequency and ragged edge. In fact, we

provide a unified framework for deriving the convergence rate and the limit distribution. In principle,

other missing patterns may be also allowed as long as one can verify the restricted strong convexity

condition and prove that the smallest eigenvalue of certain normalized Hessian matrix is bounded

away from zero with probability approaching 1 (w.p.a.1).

Second, the paper is closely related to the flourishing causal inference literature. The causal infer-

ence literature mainly considers block missing or staggered missing (staggered treatment adoption),

where some units are treated from possibly different initial dates to the end of the sample period.

Under the potential outcome framework (e.g., Rubin (1974)), the untreated potential outcomes of

2Heterogenous missing means that the missing probabilities could vary across cross sectional units or/and time.
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the treated observations are considered as missing and the objective is to impute the missing values

using the control observations. The advantage of factor models is that the untreated potential out-

comes of different units are allowed to follow unparallel trends and the treatment effects are allowed

to be heterogenous over both cross section and time dimensions. See, e.g., Gobillon and Magnac

(2016), Xu (2017), Chan and Kwok (2022) and Liu, Wang and Xu (2024). Important theoretical

progresses have been made recently by Athey et al. (2021), Bai and Ng (2021) and Xiong and Pelger

(2023). Athey et al. (2021) consider nuclear norm penalized least squares estimation and prove

the average consistency of the imputed values. Bai and Ng (2021) propose a two-step estimation

procedure for the block missing cases and provide an elegant inferential theory. Xiong and Pelger

(2023) propose to apply PCA on the adjusted sample covariance matrix where each entry is adjusted

by the inverse observation proportion. While these progresses are useful, the asymptotic properties

of the fundamental least squares estimator based on the observed data remain unclear.

This paper provides the inference theory for the least squares estimator of factor models with

missing values. Compared with Athey et al. (2021) who only establish an average convergence rate

for the NNR estimator, we provide a complete set of inference theories. Compared with Bai and

Ng (2021) who focus on block missing, our method applies to much more general missing patterns

and may improve the efficiency if there are data outside of their “tall-wide” block. For example,

we allow the treatment timing to be correlated with the factors and loadings in a block/staggered

treatment design. Our method is also more general and more efficient than Xiong and Pelger (2023).

In Xiong and Pelger (2023), the missing probabilities are allowed to be correlated with the factors or

loadings but not both and the covariance matrix of the factor is required to be time-invariant. We

show that the least squares estimation does not require such conditions. In addition, if we use Xiong

and Pelger’s (2023) estimator as the initial value for the EM algorithm and iterate until convergence,

we can improve the efficiency by eliminating the additional variance term resulting from reweighting

the entries of the sample covariance matrix.3

Third, the paper is closely related to the unbalanced panel literature because of the ragged edge

problem,4 the mixed frequency issue and random missing. Various algorithms have been proposed to

handle these missing patterns; see, e.g., Stock and Watson (2002), Mariano and Murasawa (2003),

Giannone, Reichlin and Small (2008), Aruoba, Diebold and Scotti (2009), Doz, Giannone and Re-

ichlin (2011), Jungbacker, Koopman and van der Wel (2011), and Banbura and Modugno (2014).

3Xiong and Pelger (2023) point out in its simulation section that EM iterations could further improve the efficiency

but there is no inferential theory for the iterative estimator under general missing patterns.
4 In real-time data analyses, the ragged edge problem may mean that there is mising data at the end of the sample

period or it arises because different series are released at different time.
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Typically, these algorithms estimate the model parameters (mainly the loadings) by either PCA

using only the balanced part of the panel or maximum likelihood estimation (MLE) using the EM

algorithm, and then estimate the factors by Kalman smoother using the estimated parameters and

the whole unbalanced panel. The PCA estimator using only the truncated balanced panel is easy to

implement and well studied by Doz et al. (2011), but truncation may lead to serious efficiency loss

or selection bias, especially when dealing with asset pricing panels and other high dimensional data;

see Bryzgalova, Lerner, Lettau and Pelger (2022), Chen and McCoy (2022) and Freyberger, Höpp-

ner, Neuhierl and Weber (2022) for detailed discussions. The likelihood-based estimators (Stock and

Watson (2002), Mariano and Murasawa (2003), Banbura and Modugno (2014)) do not suffer from the

truncation issue, but their asymptotic properties and the corresponding missing pattern conditions

are unknown.

This paper contributes to this literature by establishing the asymptotic theory of the least squares

estimation without truncating the unbalanced panel into a balanced one or aggregating the high

frequency series into low frequency series. Since least squares estimation is not equivalent to PCA

estimation for mixed frequency factor models, how to analyze the least squares estimator of mixed

frequency factor models is a well-recognized yet unsolved problem. This paper solves this problem.

It is also worth noting that our results allow the missing probabilities to be correlated with the latent

factors and loadings, which is particularly important for survey data and asset pricing panels, as

discussed in Bryzgalova et al. (2022). In addition, our results also illuminate the (large  large  )

asymptotic analysis of the MLE approaches in Mariano and Murasawa (2003), Banbura and Modugno

(2014) and other related papers.5 These approaches are quite popular in the nowcasting literature

for handling mixed frequency data.

1.3 Roadmap

The rest of the paper is structured as follows. Section 2 introduces the notations, missing patterns and

the estimation strategy. Section 3 discusses the roadmap for the asymptotic analyses by outlining the

key steps and intuitions. Section 4 presents the assumptions and the asymptotic properties. Section

5 consider two potential applications of the theoretical results in the paper. Section 6 presents some

simulation results. Section 7 presents an application to the UK grant allocation data to test the

5Mariano and Murasawa (2003) and Banbura and Modugno (2014) maximize essentially the same likelihood function

using different algorithms. The former uses Kalman filter to evaluate the likehood and quasi-Newton method to

maximize the likelihood, while the latter uses the EM algorithm. Note that these two papers treat the factors as

missing data when calculating the likelihood, while the EM algorithm in Stock and Watson (2002) treats both the

factors and the loadings as parameters.
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average treatment effects of partisan alignment. Section 8 concludes. All proofs are relegated to the

online appendix.

Notation. For a matrix , we use kk  kk  kk∗ and kk∞ to denote its spectral norm,

Euclidean norm, nuclear norm, and elementwise max form, respectively. min() denotes the smallest

eigenvalue of . “◦” denotes the Hadamard product of two vectors or matrices. → and
→ denote

convergence in probability and distribution, respectively. We use ( ) → ∞ to denote that 

and  pass to infinity jointly. For a positive integer  let [] ≡ {1 2  }  where ≡ signifies a

definitional relationship. Let  denote an  ×  identity matrix. Let 1 ∨ 2 = max (1 2) and

1 ∧ 2 = min (1 2). Let  =
√
 ∧  . Let  denote a generic large positive constant whose

value may vary over places.

2 Missing Patterns and Estimation

Consider the following factor model with missing values:

 = (
00
 

0
 + ) for  ∈ [ ] and  ∈ [ ], (2.1)

 = 1 { is observable} ,

where 1 {·} denotes the usual indicator function, 0 is the -dimensional factor at time  and 0 is

the -dimensional loading for unit ,  is the number of factors, and  is the error term. In (2.1),

we use 0 to denote  when it is not observable. Our objective is to estimate the factors and the

loadings using the observed data, and establish the asymptotic theory for the proposed estimator.

2.1 Missing Patterns

Let 0 = (00 00)0 where 0 = (001   
00
)

0, and 0 = (001   
00
 )

0. Let E(·) = E(·|0) The
missing data patterns allowed in this paper are listed below. These patterns can be divided into two

types depending on whether E() = 0 is allowed or not for some ( ). The first type assumes

E() ≥   0 for all  and , while the second type allows E() = 0 for some  and . For all of

these patterns,  is assumed to be independent with  for all  and , which corresponds to the

unconfoundedness condition in Rosenbaum and Rubin (1983).

Example 1 (Completely random heterogenous missing):  is independent across  and 

and independent of 0 , 
0
 and  for all ( ). The missing probability, 1 − E(), is allowed to

vary across both  and , and min E() ≥   0.
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Note that here E() can also be written as E() because of independence between  and

0. In Rubin’s (1976) terminology, this case is called missing completely at random (MCAR). The

next example considers selection on observable covariates and/or factors and loadings, which is called

missing not at random (MNAR).

Example 2 (Selection on covariates or factors and loadings):  − E() is independent
across  and , and independent with  for all  and . E() is independent with {} but could
be correlated with 0 and 0 for some  and . The conditional missing probability, 1 − E(), is
allowed to vary across  and , and E() ≥   0.

The key difference with Example 1 is that here we allow E() to be correlated with the factors

and loadings. This is particularly important as in recommendation system and many causal social

science studies the missingness arises from treatment assignments or individual choices, and conse-

quently the missing probability is correlated with certain elements of the matrix itself. For example,

in the matrix consisting of movie ratings, the probability that a person submits his rating for a movie

is positively correlated with how much she likes that movie. In survey data, high income respondents

are less likely to answer questions that has tax consequences. In asset pricing panels consisting of

characteristics of different firms, the missing probabilities of firm characteristics tend to be larger for

small-cap firms, for extreme values of the characteristics and for certain time periods with common

macroeconomic shock.

More formally, we can model the selection/assignment equation as

∗ = 
0 + 00 

0
 + , ∗ is latent and  = 1 {∗  0} , (2.2)

where  denotes some observable exogenous/predetermined variables (e.g.,  = −1), 0 and 0

denote some latent factors and loadings, and  denotes the error term. Thus each unit is allowed

to switch between the treated status and the untreated status. Our asymptotic results imply that

the least squares estimators of 0 and 0 has no selection bias even if 
0
 and 0 are correlated with

, 
0
 and 0 , as long as  is uncorrelated with , 

0
 , 

0
 and  (strong ignorability). However,

if there are missing covariates or factors in both  and ∗, then  is correlated with E() and

there is a selection bias.

To handle heterogenous E(), so far the literature only considers the case where E() is

heterogenous across  or  but not both (see, e.g., Chernozhukov et al. (2023), Zhu et al. (2022)), or

assumes that E() itself has an approximately low rank structure or depends only on observable
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exogenous covariates (see, e.g., Schnabel et al. (2016), Ma and Chen (2019), Bhattacharya and

Chatterjee (2022), Sportisse et al. (2020)). Xiong and Pelger (2023) allow E() to be heterogenous

across both  and , but do not allow E() to be correlated with 0 ; E(
0
 

00
 ) is not allowed to be

different across  either. Example 2 includes all these patterns as special cases.

Example 3 (Block missing):  = 0 for    and   , where  and  denote the

cardinality of { ∈ [ ] :  = 1 for all } and { ∈ [ ] :  = 1 for all }, respectively.  and

 are bounded away from zero as ( )→∞.

Example 4 (Staggered treatment):  = 1 for all  ≤  and  ∈ [ ] and  = 1 for    and

 ≤ ; there are no restrictions on  for    and   .  = min , and  and 

are bounded away from zero as ( )→∞. In particular, the starting treatment time for individual
   can be written as  + 1

Example 5 (Mixed frequency):  = 0 if    and  is not an integer, where  is the

number of high frequency series,  is the frequency ratio. Note that after reorganizing the data across

, this case is just block missing when there are two different frequencies and staggered missing when

there are more than two frequencies.

These three examples allow  to be strongly correlated across  and , the key difference from

Example 2 is that here we allow E() = 0 for some  and . Note that here we focus on the strong

signal case with    and    for some small   0. Conceptually it is not difficult to

extend our results to allow  and  to tend to zero at certain speed. But for notational

simplicity we do not pursue this direction.

Examples 3—4 are relevant for program evaluation. For block missing, the units with  ≤ 

would never get treated while the units with    get treated simultaneously at time  + 1. For

staggered treatment, the units with  ≤  would never get treated, while the units with   

get treated from  + 1 to the end of the sample and  = min{}. For each , the treatment

timing  is allowed to be correlated with the factors and loadings, which is relevant for the event

study literature. Our asymptotic results only require that there exist  and  such that  = 1

for  ≤  or  ≤ . Example 5 is relevant for the nowcasting literature. To estimate factor model

from mixed frequency data, so far the literature uses either maximum likelihood (e.g., Mariano and

Murasawa (2003), Banbura and Modugno (2014)), which is lack of asymptotic theory, or the PCA on

the high frequency data, which is not efficient. Our results show that direct least squares estimation

on the mixed frequency data is asymptotically normal and efficient.
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Example 6 (Raggered edge/No missing):  = 1 for  ∈ [ ] and  ∈ [ − 1] (or [ ]).

For raggered edge data, the missing observations may only arise at the end of the sample period,

and typically principal component estimation is applied on the complete data excluding the data in

the last period. Thus we put this case together with the no missing case. Our asymptotic theory

also applies here, thus includes the results of Bai (2003) as a special case.

Other missing patterns could be allowed for as long as we can prove average consistency for the

estimated factors and loadings (mainly verify the restricted strong convexity condition) and prove

that the smallest eigenvalue of the normalized Hessian is bounded away from zero in probability.

2.2 Estimation

Let  = (01  
0
)

0,  = ( 01  
0
 )
0, Λ = (1  )

0, and  = (1   )
0. We propose to

maximize the following penalized partial likelihood function:

( ) = ( ) +  ( ) (2.3)

where

( ) = −1
2

X

=1

X

=1
( −  0)

2 and (2.4)

 ( ) = −

8

°°°°(Λ0Λ −  0

)

°°°°2


− 

2

°°°°(Λ0Λ )

°°°°2


− 

2

°°°°( 0 )

°°°°2


 (2.5)

Below we explain the terms defined in (2.4) and (2.5) in order.

Here, ( ) is the partial quasi Gaussian likelihood of the outcome equation, ignoring the

constant term and the likelihood function of  from the selection equation. Given 
0, the probability

of  = 1 viz., E() may contain additional information about (0  
0
 ), e.g., E() = Φ(

00
 

0
 )

where Φ(·) denotes the CDF of the standard normal or logistic distribution function. However,

utilizing such information requires us to assume a fully parametric model for ; see, e.g., equation

(2.2) and the link function Φ (·). We shall just focus on ( ), which avoids any parametric

assumption on E(). In this case, maximizing the quasi Gaussian likelihood function is equivalent

to minimizing the least squares objective function.

 ( ) denotes a penalty function that accounts necessary restrictions on ( ) for the purpose of

identification. (Λ
0Λ

−  0


) denotes a diagonal matrix with the same diagonal elements as Λ0Λ


−  0




(Λ
0Λ

) denotes an upper-triangular matrix with the same elements as Λ0Λ


in the upper-triangular

block, and (
0

) is defined in the same way.  is an arbitrary positive constant. Thus adding the
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penalty  ( ) is equivalent to imposing the following set of identification restrictions:

1



X

=1


0
 =

1



X

=1


0
 and both are diagonal. (2.6)

Obviously, (2.6) imposes 2 restrictions for identification. As a matter of fact, for any (Λ) and any

 ×  invertible matrix , (Λ0−1) = (Λ), and there is a unique  such that (Λ0−1)

satisfies the 2 restrictions in (2.6). Without loss of generality, we assume that after certain normal-

izations or redefinitions, the true value (Λ0  0) also satisfies this restriction, i.e.,

1



X

=1
0

00
 =

1



X

=1
0 

00
 and both are diagonal. (2.7)

If (Λ0  0) does not satisfy this restriction, there always exists an × normalization matrix 0 such

that ( 00Λ0(00)−1) satisfies this restriction, and we can redefine ( 00Λ0(00)−1) as the true

value.

To account for as many missing patterns as possible, we restrict our attention to the case where the

factors and loadings are uniformly bounded. The partial maximum likelihood estimator is obtained

as follows:

(̂ ̂) = arg max
kk∞≤ kk∞≤

( )

where ̂ = (̂
0
1  ̂

0
)

0 and ̂ = (̂ 01  ̂
0
 )
0 Let Λ̂ = (̂1  ̂)0 and ̂ = (̂1  ̂ )

0. In the above

maximization, we impose the conditions that kk∞ ≤ and kk∞ ≤ to help verify the restricted

strong convexity (RSC) condition used in the proof of Theorem 4.1 of Section 4.2. It is also imposed

in Negahban and Wainwright (2012), Chernozhukov et al. (2023), and many other papers in the

matrix completion literature. But for the block missing cases, this condition is not needed as there

are other ways to obtain initial consistent estimates of the factors and loadings.

Algorithm 2.1 Partial Maximum Likelihood Estimation

1. Obtain initial consistent estimates of the factors and loadings, ̃ and ̃6

(1) For the random missing cases (Examples 1-2), we use the nuclear norm regularized estima-

tion. A popular algorithm for calculating the nuclear norm regularized estimator is the iterative

singular value thresholding (ISVT) algorithm in Mazumder et al. (2010).

(2) For examples 3-5, we can either use the nuclear norm regularized estimation, or apply PCA

6The estimators ̃ and ̃ are consistent on average (in terms of Frobenius norm) if 1√


̃ − 0


= (1) and

1√


̃− 0


= (1)
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estimation on the two complete data blocks (1 ≤  ≤  1 ≤  ≤  ) and ( + 1 ≤  ≤  1 ≤
 ≤ ) separately as in Bai and Ng (2021). We can also use Xiong and Pelger’s (2023) inverse

observation-proportion weighted estimator.

2. Use the estimator in Step 1 as the initial value for the EM algorithm of Stock and Watson (2002)

and iterate until convergence. That is, we use the estimated factors and loadings in the last

iteration to impute the missing values and then update the estimated factors and loadings by the

principal components of this imputed complete matrix, repeat this procedure until convergence.

3 Roadmap and Discussion

In this section, we consider the roadmap that paves the way for formal derivation of the asymptotic

properties of the partial maximum likelihood estimators ̂ and ̂ 

3.1 The Case of Random Missing

We focus on the case of randommissing in Examples 1—2. It is well known that nuclear norm penalized

least squares estimation is consistent on average (in terms of Frobenius norm) and computationally

advantageous. On the other hand, the nuclear norm penalty also brings in shrinkage bias and makes

it infeasible to derive explicit asymptotic expansion of the estimation error, which is crucial for

proving the limit distributions of the estimators. Therefore, the crucial issue is how to eliminate the

regularization bias and derive the asymptotic distributions.

As discussed in the introduction and in Example 2, existing methods typically rely on restrictive

assumptions on E() in order to ensure a delicately designed second step to eliminate the bias. Our

solution is simple: just go back to the unpenalized least squares estimator but take into account the

identification restrictions. In the following, we outline the key steps in the derivation of the accurate

convergence rates and limit distributions for the estimated factors and loadings.

3.1.1 The Convergence Rates

Let  = (0  0)0 0 = (00 00)0, and ̂ = (̂
0
 ̂ 0)0. Define the score and Hessian functions of () :

() = () and 0() = 0()

When () and 0() are evaluated at 
0, we simply write them as  and 0 , respectively.

The first order conditions (FOCs) of maximizing () are given by (̂) = 0
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First, we will show that ̂ is consistent on average so that we can conduct the first order Taylor

expansion of the above FOCs around 0 to obtain 0 =  +0(̂− 0) + or equivalently,

̂− 0 = −−1
0 −−1

0 (3.1)

where  denotes the (+)×1 vector of remainder terms:  = (
0
 

0
 )
0,  = (

0
1
  0 )

0

and  = (
0
1
  0 )

0. The above equivalence holds provided the inverse of 0 is well defined

asymptotically after suitable normalizations. Let

 =

Ã
 ×  0

0  × 

!
and  =

Ã
 ×  0

0  × 

!


Then the normalized version of equation (3.1) is given byÃ
1√

(̂− 0)

1√

(̂ − 0)

!
= 

− 1
2

 (̂− 0) = −−
1
2


−1
0 −

− 1
2


−1
0

= (−−
1
2

0
− 1
2

)
−1

− 1
2

√


+ (−−
1
2

0
− 1
2

 )
−1

− 1
2

√


 (3.2)

Second, noting that  = (
0
1
  0  

0
1
  0 )

0 with  =
P

=1 
0
 and  =

P
=1 

0
 ,

it is easy to see that °°°°°°
− 1
2

√


°°°°°° = (
1


) (3.3)

Third, we show in Lemmas B.1—B.2 in the Appendix that under standard regularity conditions,

as ( )→∞, °°°°(−− 1
2

0
− 1
2

)
−1
°°°° = (1) (3.4)

While this result appears simple, the proof is quite complicated because of the large dimension of the

Hessian matrix 0 as an ( + )× ( + ) matrix. Our proof utilizes the special structure

of 0 , which comes from the factor model itself. It is also crucial to normalize 0 by 
− 1
2

 , since

the eigenvalues of 0 have different asymptotic orders when  and  pass to infinity at different

speeds. For details, see the proofs of Lemmas B.1—B.2.

Fourth, for the remainder term  = (
0
 

0
 )
0, we show in Lemma B.3 in the Appendix that

kk =
°°°̂ − 0

°°°(
√

°°°̂ − 0

°°°+ √


°°°̂− 0
°°°) +(

°°°̂ − 0
°°°2 + 



°°°̂− 0
°°°2) (3.5)

kk =
°°°̂ − 0

°°°(
√

°°°̂− 0

°°°+ √


°°°̂ − 0
°°°) +(

°°°̂− 0
°°°2 + 



°°°̂ − 0
°°°2) (3.6)
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°°°° √


°°°° = (
°°°̂− 0

°°°°°°̂ − 0
°°°+r



°°°̂ − 0
°°°2 +r 



°°°̂− 0
°°°2) (3.7)°°°° √



°°°° = (
°°°̂− 0

°°°°°°̂ − 0
°°°+r



°°°̂ − 0
°°°2 +r 



°°°̂− 0
°°°2) (3.8)

In fact, the above results hold for arbitrary missing patterns discussed above. Our proof utilizes the

fact that the third order derivatives of  ( ) are sparse; e.g., ( ) = 0 for all  6=  and

( ) = 0 for all  6= . See the proof of Lemma B.3 for details.

Combining equations (3.2)-(3.8) yields thatÃ
1√

(̂− 0)

1√

(̂ − 0)

!
= (

1


) +(

1



°°°̂ − 0
°°°2 + 1



°°°̂− 0
°°°2) (3.9)

where the order on the right hand side on (3.9) holds elementwise for the left hand side object. This

expression allows us to refine the convergence rates. We shall show 1√


°°°̂− 0
°°° = (

1√


) and

1√


°°°̂ − 0
°°° = (

1√


) in Theorem 4.1 below. Then plugging these initial rates back into equation

(3.9), we immediately obtain that 1√


°°°̂− 0
°°° = (

1


) and 1√


°°°̂ − 0
°°° = (

1


), which are

the same as the rates in Bai (2003) for the complete data case.

3.1.2 The Limit Distributions

To derive the limit distribution of ̂ − 0 , from equation (3.1) we have

̂ − 0 = [̂− 0] = −[−1
0] − [−1

0]

where [·] denotes the -th block of the vector inside the square brackets, each of length . Utilizing

the asymptotically block-diagonal structure of 0 , we can show that

[−1
0] = ([0 ])

−1  +(
1√


) (3.10)

[−1
0] = (

1


) kk+(

1


√

) kk+(

1


√

) kk  (3.11)

where 0 is a block diagonal matrix, [0 ] =
P

=1 
0
 

00
 is the ( )-th block of the square

matrix 0  each of size ×  and  =
P

=1 
0
 . For detailed proof of these two expressions,

see the proof of Theorem 4.3 in Section 4.2. Given the expressions of kk, kk and kk in
equations (3.5)—(3.8) and the fact that

°°°̂− 0
°°° = (

√



) and

°°°̂ − 0
°°° = (

√



), it is easy to
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see

kk =
°°°̂ − 0

°°°(



) +(



2

) kk = (

√


2

) and kk = (

√


2

)

Thus we have [−1
0] =

°°°̂ − 0

°°°(
1


) +(

1
2


) and it follows that

̂ − 0 = − ([0 ])
−1  +(

1


)
°°°̂ − 0

°°°+(
1

2

)

Under some regularity conditions,
¡
[ 1

0 ]

¢−1 1√

 is asymptotically normal, thus

√
 (̂−0 ) is

also asymptotically normal if
√


2


→ 0. The limit distribution of
√
(̂ − 0 ) follows from similar

arguments.

3.1.3 Summary

In summary, we first derive preliminary consistent but inaccurate initial convergences rates:
°°°̂− 0

°°° =
(

√
√


) and
°°°̂ − 0

°°° = (
√
√


). Then we use equation (3.9) to refine the rates to obtain°°°̂− 0

°°° = (
√



) and

°°°̂ − 0
°°° = (

√



). These rates together with the expressions of kk,

kk and kk in equations (3.5)-(3.8) imply that [−1
0] = (

1


)
°°°̂ − 0

°°°+(
1

2


), which

is asymptotically negligible compared with the leading term − ([0 ])
−1  . Note that these results

are also valid for the complete data case (see Example 6).

Equation (3.1) plays a similar role as the eigen-decomposition expression (equation A.1) in the

Appendix A of Bai (2003). So far almost all asymptotic analyses of factor model are essentially based

on/similar to Bai’s (2003) eigen-decomposition, but it is applicable only for linear factor models with

complete data. Equation (3.1) together with the structure of 0 provides an alternative and more

general way to decompose the estimation error ̂−0 and ̂ −0. We believe that based on equation
(3.1), we can generalize the existing results of factor models to many other setups such as nonlinear

factor models or linear/nonlinear panel data models with missing values.

3.2 The Case of Block/Staggered Missing

For the block/staggered missing case (Examples 3—5), the roadmap is essentially the same as the

random missing case. The major difficulty is how to show (−−
1
2

0
− 1
2

 )
−1 = (1) because the

structure of 0 under block/staggered missing and under random missing are quite different.

A key condition for proving (−−
1
2

0
− 1
2

 )
−1 = (1) in the random missing cases is that

E()  0 for all  and . Nevertheless, this condition is violated in the block/staggered missing
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case where E() = 0 for some ( ) when    and   . Because of this fundamental

difference, we prove (−−
1
2

0
− 1
2

 )
−1 = (1) separately in Lemma B.2 of the Appendix utilizing

a totally different strategy. In fact, after some effort we successfully calculate all the eigenvalues and

eigenvectors of 
− 1
2

0
−1
2

 for the block/staggered missing case!

4 Assumptions and Asymptotic Theories

In this section we first provide some assumptions and then formally study the asymptotic properties

of the partial maximum likelihood estimators (PMLEs) ̂ and ̂  Recall that  denote some generic

large positive constant whose value may vary over places.

4.1 Assumptions

Assumption 1 (i) 1

 00 0

→ Σ  0, and max1≤≤
°°0 °° ≤ .

(ii) 1

Λ00Λ0

→ ΣΛ  0 and max1≤≤
°°0°° ≤ .

Assumption 1(i)—(ii) corresponds to Assumptions A—B in Bai (2003). As in Bai (2003) we focus

on the case of strong factors. Unlike Bai (2003) who only assumes uniformly bounded loadings,

we require that both the factors and loadings are uniformly bounded. In the matrix completion

literature, the uniform boundedness of both
°°0 °° and °°0°° is sometimes referred to the incoherence

condition; see. e.g., Candes and Recht (2009), Candes and Plan (2010), Keshavan, Montanari and Oh

(2010), Negahban and Wainwright (2012), Chen et al. (2019), and Chernozhukov et al. (2023). This

condition requires that the entries of the singular vectors of the latent signal matrix  0Λ00 should be

approximately evenly distributed. Technically, the incoherent condition is crucial for verifying the

restricted strong convexity (RSC) condition, which is a key step for proving the average consistency

(in terms of Frobenius norm) of the imputed matrix using nuclear norm penalization. See, e.g.,

Negahban and Wainwright (2011, 2012) and Chernozhukov et al. (2023). In addition, the minimax

result in Chernozhukov et al. (2023) argues that the incoherence condition is necessary. For the

random missing cases (Examples 1—2), our proof for the initial convergence rates of
°°°̂− 0

°°° and°°°̂ − 0
°°° also requires verifying the RSC directly. This is why we also need the incoherence condition.

Let ̃ =  − E() and  ( ) =
1


P
=1 |E(̃̃)| Let max = max1≤≤ and max =

max1≤≤  Define min and min similarly.

Assumption 2 (i) For random missing (Examples 1—2), given 0 ̃ is independent across , and

independent with {} ; E() is independent with  and may vary across both  and , and
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min E() ≥   0; 1


P
=1

P
=1  ( ) ≤  ; E( 1



P
=1

°°° 1√


P
=1[ − E()]0 00

°°°) =
(1) for some  ≥ 4 such that 

1
√

→ 0 and 

1
√

→ 0

(ii) For block/staggered missing (Examples 3-4),  = 1 for  ≤  or  ≤  and no restrictions

on  for    and   , where  and  is defined in Example 3. For mixed frequency (Example

5),  = 0 if    and  is not an integer, where  is the number of high frequency series, 

is the frequency ratio. In addition, as ( ) → ∞, both  and  are bounded away from

zero, both min(
1


P
=1 

0
 

00
 ) and min(

1


P

=1 
0

00
 ) are positive and bounded away from zero in

probability.

Assumption 2 summarizes the conditions on missing patterns discussed in Section 2.1. Note that

our asymptotic results only require Assumption 2(i) or 2(ii), but not both. For random missing,

Assumption 2(i) implies that E() is allowed to vary across both  and  and be correlated with 0

and 0 for some ( )  The condition on  ( ) ensures weak dependence of {̃} along the time
dimension, which is comparable with Assumption 4(ii) below by noticing that max  ( ) ≤ 1..
As far as we know, Assumption 2 includes almost all the missing patterns considered in existing

literature except for the case where the error term  is correlated with the missing mechanism.

Assumption 3 The eigenvalues of the  ×  matrix ΣΣΛ are different.

Assumption 3 is a standard identification condition and is the same as Assumption G in Bai

(2003). It allows us to identify the factors and loadings from the common components.

Assumption 4 Let ( ) =
1


P
=1 E().

(i) E(||4) ≤.

(ii) max ( ) ≤ and 1


P
=1

P
=1 | ( )| ≤ .

(iii) For every ( ), E{ 1√


P
=1[ − E()]}2 ≤ .

Assumption 4 generalizes Assumption C in Bai (2003) to the missing data setting. When there

is no missing data,  = 1 for all  and , and these assumptions reduce to Bai’s (2003) Assumption

C with some slight modifications.

Assumption 5 E( 1


P
=1 || 1√

P
=1 

0
 ||) ≤  and E( 1



P
=1 || 1√

P
=1 

0
 ||) ≤ 

for some  ≥ 2.

Assumption 5 generalizes Assumption D in Bai (2003) to the missing data setting. If  = 2 and

 = 1 for all  and  the first part of the above assumption reduces to Assumption D in Bai (2003).
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To introduce the next assumption, let ̄Λ =
1


P
=1 

0

00
  ̄ = 1



P
=1 

0
 

00
  Λ =

E(̄Λ) and  = E(̄ ) Let 1 = 0 , 2 = 0 , and  = 
0
 

00
 

Assumption 6 (i) 1


P
=1

°°̄Λ −Λ

°°2 =  (
1

) 1



P
=1

°°̄ −

°°2 =  (
1

) min min (Λ)

≥   0 and min min ( ) ≥   0

(ii) max E
°°° 1√



P
=1

P
=1[

−1
 1 − E(−1 1)]

°°°2 ≤  , max
1


P
=1

P
=1

°°E(−1 1)°°
≤ , max E( 1

P
=1

°°° 1√


P
=1[1 − E(1)]

°°°2) ≤ and max
1


P
=1

°°°P
=1 E(1)

°°°2 ≤ ;

max E
°°° 1√



P
=1

P
=1[

−1
Λ 2 − E(−1Λ 2)]

°°°2 ≤  , max
1


P
=1

P
=1

°°E(−1Λ 2)°° ≤
 , max E( 1

P
=1

°°° 1√


P
=1[2 − E(2)]

°°°2) ≤ and max
1


P
=1

°°°P
=1 E(2)

°°°2 ≤ .

(iii) E|| 1√


P
=1

P
=1

−1
 ||2 ≤ and E|| 1√



P
=1

P
=1

−1
Λ ||2 ≤ ;

max E
°°° 1√



P
=1

P
=1

−1
 

°°°2 ≤ and max E( 1
P

=1

°°° 1√


P
=1 

°°°2) ≤ ;

max E
°°° 1√



P
=1

P
=1

−1
Λ 

°°°2 ≤ and max E( 1
P

=1

°°° 1√


P
=1 

°°°2) ≤ .

(iv) For any , 1


P
=1 

0
 

00


→ Σ and 1√


P
=1 

0


→ (0Ω ) for some positive

definite matrices Σ and Ω .

(v) For any , 1


P
=1 

0

00
 → ΣΛ and 1√



P
=1 

0


→ (0ΩΛ) for some positive

definite matrices ΣΛ and ΩΛ.

Assumption 6 generalizes Assumption F in Bai (2003) to the missing data setting. Like Assump-

tions 4—5, it allows the error  to be heteroscedastic and weakly correlated across  and . The matrix

completion literature typically assumes that  is independent across  and ; see, e.g., Negahban and

Wainwright (2012), Chen et al. (2019), Xia and Yuan (2021), Zhu et al. (2022), Bhattacharya and

Chatterjee (2022) and Chernozhukov et al. (2023). In this sense, Assumptions 4—6 extend the matrix

completion literature from the setup of strict factor models to that of approximate factor models,

which is more suitable for asset pricing, economic forecasting and other non-experimental settings.

For example, the asset returns may reflect the risk premium of both strong factors as defined in As-

sumption 1 and weak factors where the latter enter the error terms generating weak cross-sectional

dependence.

4.2 Asymptotic Properties of the PMLEs

Now we are ready to formally present the asymptotic results.

Theorem 4.1 (Preliminary Consistency): Suppose that Assumptions 1—4 hold. Then as ( )→
∞, 1√



°°°̂− 0
°°° = (

1√


) and 1√


°°°̂ − 0
°°° = (

1√


).
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Theorem 4.1 implies that the convergence rates of ̂ − 0 and ̂ − 0 are (
1√


) on average.

Although the rate (
1√


) is not sharp, it is established allowing  to be weakly correlated across

 and . More importantly, once we plug the above results back into equation (3.9), we can obtain

1√


°°°̂− 0
°°° = (

1


) and 1√


°°°̂ − 0
°°° = (

1


) as stated in Theorem 4.2 below. The latter

rate is sharp and as accurate as the result of Bai (2003) for the complete data case.

Theorem 4.2 (Average Convergence Rate): Suppose that Assumptions 1—5 hold. Then as

( )→∞, 1√


°°°̂− 0
°°° = (

1


) and 1√


°°°̂ − 0
°°° = (

1


).

Existing results in the matrix completion literature typically assume that  is independent across

 and , and the best rate proved (or implied) by these results is (

√
log(+ )


); see, e.g., corollary

1 of Negahban and Wainwright (2012), Theorem 2 of Athey et al. (2021), and Theorem 1 of Zhu et

al. (2022). Our two-step proof strategy, viz., first establishing the initial rate in Theorem 4.1 and

then using equation (3.9) to refine the rate, allows us to establish the sharp rate in Theorem 4.2 even

when ’s are weakly dependent across  and .

Theorem 4.2 could be useful for characterizing the effect of using estimated factors or loadings as

regressors in subsequent vector autoregression or forecasting equations, and the rate(
1


) is crucial

to show that such effect is asymptotically negligible (e.g., Bai and Ng (2006)). In the current context,

as discussed in Section 3, the rate (
1


) combined with equations (3.5)—(3.8), allows us to show

that [−1
0] (the higher order term in the expansion of ̂−0 ) equals

°°°̂ − 0

°°°(
1


)+(

1
2


),

and is asymptotically negligible if
√
 → 0.

Remark 4.1 (Convergence of the EM algorithm in Section 2.2) Based on the structure of

0() presented in Appendix B, it is not difficult to show that there exist   0 and   0 such that

min
∈N(

0)
min(−−

1
2

0()
− 1
2

) ≥  w.p.a.1 as ( ) → ∞, where min(·) denotes the smallest

eigenvalue and N(
0) ≡ { ∈ (+ ) : ||−

1
2

 ( − 0)|| ≤ } This implies that in the region
N(

0), the criterion function () is concave and there exists a unique local maximum. By design,

the initial value in step (1), ̃ = (̃
0
 ̃ 0)0 lies in N(

0) w.p.a.1, and it is well-known that the EM

algorithm converges to the local maximum. Then the EM algorithm in step (2) would converge to the

local maximum in N(
0). In addition, Theorem 4.1 implies that the global maximum ̂ = (̂

0
 ̂ 0)0

lies in N(
0) w.p.a.1. Then the local maximum in N(

0) is also the global maximum and the EM

algorithm in step (2) converges to the global maximum ̂.
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Theorem 4.3 (Limit Distributions): Suppose that Assumptions 1—6 hold. Then as ( )→∞,

√
 (̂ − 0 )

→ N (0Σ−1 ΩΣ−1 ) if
√
 → 0

√
(̂ − 0 )

→ N (0Σ−1ΛΩΛΣ−1Λ ) if
√
 → 0

Theorem 4.3 allows us to construct confidence intervals for the factors and loadings. This is

useful since in various applications the factors represent economic indices and the loadings measure

the exposure of stock or bond returns to risk factors. Note that the limit distribution of ̂ (resp.

̂) is the same as if one runs the least squares regression  on 
0
 (resp. 

0
 ), i.e., as if the

factors (resp. loadings) were observable. The effect of using estimated factors (resp. loadings) is

asymptotically negligible when
√
 → 0 (resp.

√
 → 0).

To make inferences on 0 and 0 , one needs to consistently estimate Σ  ΣΛ Ω  and ΩΛ It

is easy to see that we can estimate Σ and ΣΛ consistently by Σ̂ =
1


P
=1 ̂̂

0
 and Σ̂Λ =

1


P
=1 ̂̂

0
 respectively. Ω can be also estimated by using the standard heterokedasticity-and-

autocorrelation-consistent (HAC) formula with 
0
 replaced by ̂̂ where ̂ = ( −

̂
0
̂) For ΩΛ the estimation depends on whether we allow for cross-sectional correlation among©


0


ª
 In the special case where 

0
 are uncorrelated across  we have

ΩΛ = lim
→∞

1



X

=1
E(2

0

00
 )

and then we can estimate ΩΛ by Ω̂Λ =
1


P
=1 ̂

2
̂̂

0
 When cross-sectional correlations are

present, we can follow Bai and Ng (2006) to estimate ΩΛ consistently.

Remark 4.2 (Mixed frequency) Theorems 4.2—4.3 establish the asymptotic properties for the least

squares estimator of large dimensional mixed frequency factor models via minimizing
P

=1

P
=1 (−

 0)2. For the case of complete data, it is well-known that the PCA estimation is equivalent to the

least squares estimation and the relevant asymptotic theory is well-studied in Bai (2003). However,

the equivalence no longer applies for mixed frequency factor models, and consequently how to es-

tablish the asymptotic theory for the least squares estimation of mixed frequency factor models is a

well-recognized yet unsolved problem. A popular method for mixed frequency time series is to aggregate

the high frequency time series into low frequency series (e.g., Andreou, Gagliardini, Ghysels, and Ru-

bin (2019)), but this is not efficient. Theorems 4.2—4.3 constitute the first theory that systematically

solves this important problem.
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Remark 4.3 (Generality and efficiency) Theorems 4.2—4.3 also show that the least squares es-

timator is more general, and it is either more efficient than or as efficient as the methods of Bai and

Ng (2021), Xiong and Pelger (2023), Jin et al. (2021) and Chernozhukov et al. (2023). Bai and Ng

(2021) provide an excellent practical solution for block missing (Examples 3—5), and their estimated

factors and loadings are good enough after just one iteration. Our results show that if we use their es-

timates as initial values and iterate until convergence, we actually obtain the least squares estimates,

and the least squares estimators are as asymptotically efficient as their estimators. Xiong and Pel-

ger’s (2023) method is quite general and applies to Examples 1—6 except that they only allow E()

to be correlated with 0 or 
0
 but not both, and they also require E(

0
 

00
 ) be stable over time. Their

estimator is less efficient than the least squares estimator due to the inverse observation-proportion

weighting, but we can obtain the least squares estimate by using their estimate as the initial value and

iterating until convergence. The EM algorithm has always been popular for dealing with missing data

for factor models since Stock and Watson (2002). Jin et al. (2021) establish the asymptotic theory

for the EM algorithm under homogenous random missing, which is more restrictive than Example 1.

Our results provide the asymptotic theory for the EM algorithm under Examples 1—6, i.e., the EM

algorithm is actually asymptotically valid for a very wide range of missing patterns. Chernozhukov

et al. (2023) propose a debiasing procedure and rigorous theory for post nuclear norm regularization

inference based on sample splitting. Their method allows E() to vary across  or  but not both,

which is more restrictive than Example 1.

5 Applications: Average Treatment Effect Estimation and Factor-

Augmented Regression

The asymptotic expansion in (3.1) also allows us to characterize the effect of using estimated fac-

tors/loadings on the limit distributions of the estimated average treatment effects or the estimated

parameters of factor-augmented regressions. This section focuses on these two important applica-

tions.

5.1 Estimation of Average Treatment Effect

To proceed, we add the following assumption.

Assumption 7 Let  = (1  )
0 and  = (1   )

0 denote some nonrandom or exogenous

weighting vectors such that kk = (
√
) and kk = (

√
 ) Let  = 

0
  and  =


0
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(i) E
°°° 1√



P
=1

P
=1 

°°°2 ≤ for  = −1  and −1Λ ;

(ii) for any , 1√
0

P
=1 

→ N (0Ω) for some Ω;
(iii) for any , 1√

0

P
=1 

→ N (0Ω) for some Ω.

Assumption 7 is similar to Assumption 6(iii), and it also allows the error  to be heteroscedastic

and weakly correlated across  and . Based on Assumption 7 and (3.1), we are able to prove the

following theorem under the missing patterns in Examples 1—6.

Theorem 5.1 (Weighted convergence): Under Assumptions 1—7, as ( )→∞,

1


(Λ̂− Λ0)0 = (

1

2

) and
1


(̂ −  0)0 = (

1

2

).

Now we apply Theorem 5.1 to analyze the average treatment effect. Let (1) and (0) denote

the potential outcome of unit  at time  with and without treatment, respectively. The individual

treatment effect is

  = (1)− (0) for    and   ,

where  is the number of units that never get treated, and unit    receives treatment from

period +1 to the end of the sample period. We consider the case where the  units can be divided

into  groups and all units in group  get treated from period +1. Let  = |{ ∈ [ ] :  = }|
with |·| denoting the cardinality of a set. Then the average treatment effect for group  at time   

is

 =
1



X
:=

 

and the average treatment effect over  for unit    is  =
1

−
P

=+1
 .

Various methods have been proposed to estimate the treatment effects. As discussed in Athey et

al. (2021) and Bai and Ng (2021), both the synthetic control approach and the unconfoundedness

approach can be studied from a factor model perspective. Let  denote a vector of exogenous

covariates. Following the literature, we assume

 =  (1− ) + 00 
0
 + 0

0 +  (5.1)

where  denotes the error term, 
00
 

0
 denotes the interactive fixed effects (IFEs), and 

0 is a vector

of the slope coefficients of  Note that here {( ) :  = 1} and {( ) :  = 0} are considered as
the control group and treatment group, respectively. As a result, we have

 = (0) · 1{ = 1}+ (1) · 1{ = 0}
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where (0) = 00 
0
 +0

0+ and  (1) =  (1−)+(0) If   =  for all  and , then (5.1)

is exactly the panel data model with IFEs as studied by Bai (2009) and the least squares estimator

̂ of  is asymptotically normal. Here we allow the individual treatment effect   to be heterogenous

across both  and , thus our model is more general than that in Bai (2009). Unlike Xiong and Pelger

(2023) who model   using the IFEs structure, we do not impose any structure on   as in Lu, Miao

and Su (2023). To estimate the treatment effects, we use the observations in the control group to

impute the potential outcomes of the treated group if they were not treated. The procedure is stated

in Algorithm 5.1 below.

Algorithm 5.1 Partial Maximum Likelihood Estimation

1. Obtain the estimator ̂ of 0 using the balanced part of the control group observations;

2. Obtain the estimators ̂ = (̂ 01  ̂
0
 )
0 and ̂ = (̂

0
1  ̂

0
 )
0 of 0 =

¡
001   

00


¢0
and 0 =¡

001   
00


¢0
using the observations in the control group ( − 0̂ with  = 1) and the

algorithm in Section 2.2;

3. Calculate the individual treatment effect ̂  = (−0̂)− ̂ 0̂ for ( ) in the treatment group.

Note that ̂  −   = −0(̂ − 0) − (̂ 0̂ − 00 
0
 ) + . For all    and  ≥  ̂  is

generally inconsistent with   due to the appearance of  For this reason, one typically considers

the average treatment effect over  or  Let  · = 1
0
P

=1   and  · = 1
0
P

=1   denote the

average treatment effect weighted by  = (1  )
0 and  = (1   )

0, respectively. Define ̂ ·

and ̂ · analogously with   replaced by ̂ 

For two scalars 1 and 2 1 ³ 2 denotes that both 12 and 21 are bounded away from 0

and infinity. To study the asymptotic properties of ̂ · and ̂ · we add the following assumption.

Assumption 8 (i) 0 ³  and 0 ³  ;

(ii) ̂ − 0 = (
−2
 );

(iii) max E kk2 ≤

The following theorem reports the asymptotic distributions of ̂ · −  · and ̂ · −  ·

Proposition 5.1 Suppose that Assumption 8 holds. Suppose that
©
 

0
  

0
  

ª
satisfy Assump-

tions 1, 2(ii), and 3—7 with  replaced by  Then as ( )→∞,

√
(̂ · −  ·) 

→ N (0 1) if
√
 → 0 and
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√
 (̂ · −  ·) 

→ N (0 1) if
√
 → 0

where

2 
=  0ΛΣ

−1
ΛΩΛΣ

−1
Λ Λ +



0
Ω + 2

0
ΛΣ

−1
Λ

1

0

X

=1
E(0 )

2  =  0Σ
−1
 ΩΣ

−1
  +



0
Ω + 2

0
Σ

−1


1

0

X

=1
E(0 )

Λ =
1

0

X

=1


0
  and  =

1

0

X

=1


0
 

The first two terms in 2 
(resp. 2 ) can be consistently estimated by replacing 0 , 

0


and  by ̂, ̂ and ̂, respectively. For the last term in 2 
, the key is to estimate Λ ≡

1
0
P

=1 E(
0
 ) consistently. To do so, one can assume certain weak cross-sectional de-

pendence condition in
¡
 

0
  

¢
. Alternatively, if one assumes that ’s are independent over 

conditional on 0 then

Λ =
1

0

X

=1
E(0 ) =

1

0

X

=1
E(0 

2
)

which can be estimated consistently by its sample analogue with 0 and  replaced by ̂ and

̂, respectively, where ̂ = ( − ̂ 0̂ − 0̂). To estimate Λ under general weak cross-

sectional dependence, we refer the readers directly to Bai and Ng (2006). Similarly, for the last term

in 2   the key is to estimate  ≡ 1
0
P

=1 E(
0
 ) consistently, say by using the HAC

procedure. The procedure is standard and thus omitted here for brevity.

For , we can simply take  = 1 if  =  and 0 if  6= . Proposition 5.1 allows us

to construct confidence intervals or perform hypothesis testing for the group-time average treatment

effects . For example, in program evaluation studies, we want to know whether  is

heterogenous across groups, how  evolves over the length of exposure to the treatment − ,

and what is the average of  for all  and   .

5.2 Factor-Augmented Regressions

In this subsection, we consider the factor-augmented regression:

+ = 000 + 00 + + (5.2)

where  denotes the vector of exogenous variables and + denotes the dependent variable at time

+. Model (5.2) can be regarded as a predictive regression model when  ≥ 1 As explained in Bai
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and Ng (2006), this is the diffusion index forecasting model when + is a scalar; and when  = 1 and

+1 = (
00
+1

0
+1)

0, 0 and 0 become the coefficient matrix and (5.2) becomes a factor-augmented

vector autoregression model. Since 0 is unobservable, we can use ̂ as a proxy for 0. Bai and Ng

(2006) show that when ̂ is estimated by the principal component analysis (PCA) and there is no

missing data, using ̂ for 0 does not affect the limit distributions of the parameter estimates and

the conditional mean of + if
√
 → 0. Theorem 5.1 allows us to extend the results of Bai and

Ng (2006) to cases where ̂ is estimated from panel data with missing observations.

Assumption 9 Let  = (
00
 

0
)
0. E(+ |  −1 −1  ) = 0 for all   0. max E kk4 ≤

 .  and  are independent with  for all  and .
1


P
=1 

0


→ Σ  0 and 1√


P
=1 +

→
N (0Σ), where Σ =  1



P
=1 

0

2
+.

Assumption 9 is exactly the same as Assumption E in Bai and Ng (2006); see the discussion therein

for details. Let 0 = (00 00)0,  = (1+   )
0,  = (1  −)0, and  = (1+   )

0. Let

̂ = (̂
0


0
)
0, where ̂ is estimated using the incomplete panel ( with  = 1) and the algorithm

in Section 2.2. Let ̂ = (̂1  ̂−)0. Let ̂ = (̂0 ̂
0
)0 be the least squares estimator of regressing

 on ̂. It follows that  = ̂0 + + ( 0 − ̂ )0 and

̂ = (̂ 0̂)−1̂ 0 = 0 + (̂ 0̂)−1[̂ 0+ ̂ 0( 0 − ̂ )0]

Theorem 4.2 implies that ̂ 0̂ =  0 + (



). If we take  = + in Assumption 7, Theorem

5.1 implies that ̂ 0 =  0 + (̂ −  0)0 =  0 + (


2


) under Assumption 9. If take  =  in

Assumption 7, then Theorem 5.1 implies ̂ 0( 0 − ̂ ) =  0( 0 − ̂ ) + (̂ − 0)0( 0 − ̂ ) = (


2


)

under Assumption 9. Thus we have the following theorem.

Proposition 5.2 Suppose that Assumptions 1—7 and 9 hold. Then

(i) As ( )→∞,
√
 (̂ − )

→ (0Σ−1ΣΣ
−1
) if

√
 → 0;

(ii) A consistent estimator of Σ−1ΣΣ
−1
 is (

1


P−
=1 ̂̂

0
)
−1( 1



P−
=1 ̂2+̂̂

0
)(

1


P−
=1 ̂̂

0
)
−1.

Proposition 5.2 allows us to derive the limit distributions of the conditional mean and the forecast.

The conditional mean of + at time  is +| = 000 + 00 . Let ̂+| = ̂0̂ + ̂
0
 .

Then (̂+| − +| )
→ (0 1), where 2 = 1


 0Σ

−1
ΣΣ

−1
 +

1

00Σ−1ΛΩΛΣ

−1
Λ 

0.

Confidence intervals can be constructed accordingly. Compared with Bai and Ng (2006), Proposition

5.2 utilizes the incomplete panel data more efficiently, since we extract the factors through least

squares directly rather than through aggregating the high frequency series into low frequency series

or throwing away those series with missing data.
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6 Simulations

In this section, we perform Monte Carlo simulations to access the adequacy of the limit distributions

in approximating their finite sample counterparts and demonstrate the finite sample performance of

our method. To facilitate graphical presentation for the distributions of the estimated factors and

loadings, we focus on the case with one factor.

6.1 Data Generating Processes (DGPs)

The data are generated as follows. Generate  as i.i.d. N (0,1) for  ∈ [ ] and  as i.i.d. N (0,1)
for  ∈ [ ]. Once the factors and loadings are independently generated, we find  (a scalar here)

to normalize them such that 0 = 0, 0 = −1 and 1


P
=1(

0
 )
2 = 1



P
=1(

0
 )
2. For each

simulation,  is i.i.d. N (0,1) across  and ,  is generated according to the following four missing

patterns, and  = (
00
 

0
 + ).

Pattern 1 (Completely random heterogenous missing):  is binary, independent across  and

 and independent of 0 , 
0
 and .  ≡ E() follows i.i.d. Uniform(0.1,0.9) across  and .

Pattern 2 (Selection on factors and loadings): Conditioning on 0,  is independent across 

and  and independent of ; E() = Φ(00 
0
 ) where Φ(·) denotes the CDF of the standard

normal distribution.

Pattern 3 (Mixed frequency):  = 0 if    = 2 and 3 is not an integer, i.e., there are

2 high frequency series and the frequency ratio is 3. In this case, we consider the mixed

data with both monthly and quarterly observations.

Pattern 4 (Staggered missing):  = 04 and  = 04 .  = 0 when ( ) belongs to

{+1 ≤  ≤ 07 and 07 +1 ≤  ≤ } or {07 +1 ≤  ≤  and +1 ≤  ≤ }, i.e., the
first group has 04 units and never gets treated, the second group has 03 units and gets

treated from  = 07 + 1 to  =  , and the third group has 03 units and gets treated from

 = 04 + 1 to  =  .

The number of simulations is 2000.

6.2 Simulation Results

For all the above four patterns of missing, we use the iterative singular value thresholding (SVT)

algorithm proposed in Mazumder et al. (2010) to calculate the nuclear norm regularized estimator,
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(̃ ̃). Then we use (̃ ̃) as the initial value for the EM algorithm and iterate until convergence.

That is, we use (̃ ̃) to impute the missing values and reestimate the factors and loadings by the

principal components of this imputed complete matrix, and repeat this procedure until convergence.

Figures 1—4 present the histograms of standardized estimated factors at  = 2 (̂2 − 0
2

divided by its asymptotic standard deviation) and standardized estimated loadings at  = 2

(̂2 − 02 divided by its asymptotic standard deviation) for missing patterns 1—4, respectively.

The standard normal density curve is overlaid on the histograms for comparison. Due to limited

space, we only present the results for ( ) = (100 100) and ( ) = (200 200). We summarize

some important findings from Figures 1—4. First, the two subfigures in the first row of Figures 1—4 are

the distributions of the nuclear norm regularized estimators of the factors and loadings, respectively,

when ( ) = (100 100). Obviously, these preliminary estimators are biased and shrunk towards

zero, which is due to the shrinkage effect of nuclear norm regularization. Second, the two subfigures

in the second (resp. third) row of Figures 1—4 are the distributions of the NN-EM estimators of

the factors and loadings, respectively, when ( ) = (100 100) (resp. ( ) = (200 200)). The

histograms in all these subfigures match very well with the standard normal density curve, although

missing patterns 1—4 are quite different and the variances of the unnormalized estimation error (̂−0
and ̂ − 0 ) also depend on ( ). These results confirm our asymptotic results in finite samples.

Figures 5—6 graphically present the confidence intervals of the factors {0   ∈ [50]} constructed
using the NN-EM estimator with ( ) = (100 100) and (200 200), respectively. The solid curve in

the middle denotes the true factor processes. Since  is i.i.d. N (0,1) in the simulations, ΩΛ = ΣΛ
and the asymptotic variance of

√
(̂− 0 ) is Σ

−1
Λ , which is estimated by Σ̂Λ =

1


P
=1 (̂)

2. It

follows that the confidence interval for 0 can be constructed as (̂ − 196 1√
Σ̂Λ

 ̂ + 196
1√
Σ̂Λ

)

for  ∈ [ ]. Comparing the results in Figures 5—6, we can see that the confidence intervals become
narrower as  and  increase, and in all subfigures the true factor process is covered very well.

To evaluate the accuracy of the factor estimates, we report in Table 1 the correlation coefficients

between the true factors and the factors estimated by NN and NN-EM, averaged over 2000 simula-

tions. We can see that the correlation coefficients are all close to one, and the improvement is obvious

when we compare NN with NN-EM or when  and  increase.

Tables 2 and 3 report the root mean squared errors (RMSEs) of the estimated factors and the

estimated loadings (i.e., { 1


P
=1(̂ − 0 )

2}12 and { 1


P
=1(̂ − 0 )

2}12), averaged over 2000
simulations. The improvement of NN-EM over NN is also quite obvious. Moreover, the RMSEs of

NN-EM are all very close to the theoretical standard deviations. For example, for pattern 3 in Table
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Table 1: Average Correlation Coefficients of the Estimated Factors

Pattern 1 Pattern 2 Pattern 3 Pattern 4

  NN NN-EM NN NN-EM NN NN-EM NN NN-EM

50 100 0.972 0.982 0.973 0.980 0.981 0.987 0.951 0.978

100 100 0.987 0.990 0.989 0.989 0.982 0.992 0.977 0.992

200 200 0.994 0.995 0.996 0.996 0.980 0.995 0.980 0.996

400 200 0.996 0.997 0.997 0.997 0.990 0.998 0.984 0.998

Notes: These are the correlation coefficients between the true factors and the factors estimated by NN or NN-EM,

averaged over 2000 simulations.

2, “h/l” denotes the RMSEs of the estimated factors of integer periods and non-integer periods,

respectively, viz, 1
3

P
3=integer(̂ − 0 )

2}12 and { 1
23

P
36=integer(̂ − 0 )

2}12. The effective
sample size for the estimated factors in the non-integer periods and integer periods is  and  ,

respectively, since only the high frequency series are observable at non-integer periods. For pattern

3 in Table 3, “h/l” denotes the RMSEs of the estimated loadings of high frequency units and low

frequency units, respectively, viz., { 1


P

=1(̂ − 0 )
2}12 and { 1

−

P
=+1

(̂ − 0 )
2}12. Note

that the effective sample size for the estimated loadings of high frequency units and low frequency

units is  and 3, respectively. As we can tell from Tables 2—3, the RMSEs decrease as  and 

increase at rates as predicted by the theory.

We next consider factor-augmented regressions and average treatment effect estimation. For

factor-augmented regression, we generate the data by +1 = 00 +0++1, where 
0 = 0 = 1,

 is i.i.d. N (0,1), and +1 is i.i.d. N (0,1). The estimated conditional mean is ̂+1| = ̂̂+̂ ,

and the 95% confidence interval for +1| is (̂+1| − 196̂  ̂+1| + 196̂ ) where ̂ is a

consistent estimate of  =
q
2 with 2 defined below Proposition 5.2. For patterns 3—4, we

generate the individual treatment effects   as i.i.d. Uniform(0.1,0.5) across  and . Then the true

average treatment effect at  =  is  · = 1
−

P
=+1

  and the 95% confidence interval for 

is (̂ −196̂  ̂ +196̂ ), where ̂ is a consistent estimator of  =
q
2 with 

2

defined

in Proposition 5.1. Table 4 reports the coverage rates for the 95% confidence intervals of +1|

and  under different patterns and different combinations of  and  based on 2000 replications.

As we can tell from Table 4, the coverage rate is close to the nominal level 95% in all cases. This

demonstrates the validity of using the NN-EM estimated factors and loadings for forecasting and

treatment effect estimation.
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Figure 1: Distributions of the Estimated Factors and Loadings: Pattern 1

NN,  = 100  = 100 NN,  = 100  = 100

NNEM,  = 100  = 100 NNEM,  = 100  = 100

NNEM,  = 200  = 200 NNEM,  = 200  = 200

Notes: These are the histograms of the standardized estimated factors at  = 2 and the standardized estimated

loadings at  = 2. The results are based on 2,000 simulations. The curve overlaid on the histograms is the standard

normal density function.
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Figure 2: Distributions of the Estimated Factors and Loadings: Pattern 2

NN,  = 100  = 100 NN,  = 100  = 100

NNEM,  = 100  = 100 NNEM,  = 100  = 100

NNEM,  = 200  = 200 NNEM,  = 200  = 200

Notes: These are the histograms of the standardized estimated factors at  = 2 and the standardized estimated

loadings at  = 2. The results are based on 2,000 simulations. The curve overlaid on the histograms is the standard

normal density function.
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Figure 3: Distributions of the Estimated Factors and Loadings: Pattern 3

NN,  = 100  = 100 NN,  = 100  = 100

NNEM,  = 100  = 100 NNEM,  = 100  = 100

NNEM,  = 200  = 200 NNEM,  = 200  = 200

Notes: These are the histograms of the standardized estimated factors at  = 2 and the standardized estimated

loadings at  = 2. The results are based on 2,000 simulations. The curve overlaid on the histograms is the standard

normal density function.
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Figure 4: Distributions of the Estimated Factors and Loadings: Pattern 4

NN,  = 100  = 100 NN,  = 100  = 100

NNEM,  = 100  = 100 NNEM,  = 100  = 100

NNEM,  = 200  = 200 NNEM,  = 200  = 200

Notes: These are the histograms of the standardized estimated factors at  = 2 and the standardized estimated

loadings at  = 2. The results are based on 2,000 simulations. The curve overlaid on the histograms is the standard

normal density function.
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Figure 5: Confidence Intervals for the Factors by NNEM

Pattern 1,  = 100  = 100 Pattern 2,  = 100  = 100

Pattern 3,  = 100  = 100 Pattern 4,  = 100  = 100

Notes: These are the 95% confidence intervals for the true factor process from  = 1 to  = 50. The confidence

intervals are calculated by NN-EM. The solid curve in the middle is the true factor process.

Table 2: Root Mean Squared Error of the Estimated Factors

Pattern 1 Pattern 2 Pattern 3 Pattern 4

  NN NN-EM NN NN-EM NN(h/l) NN-EM(h/l) NN NN-EM

50 100 0.483 0.200 0.500 0.205 0.223/0.406 0.136/0.182 0.409 0.203

100 100 0.384 0.144 0.403 0.146 0.158/0.425 0.098/0.143 0.322 0.127

200 200 0.315 0.099 0.294 0.095 0.131/0.374 0.071/0.110 0.300 0.092

400 200 0.325 0.072 0.333 0.075 0.114/0.319 0.048/0.068 0.277 0.065

Notes: These are the root mean squared errors of the estimated factors calculated by NN or NN-EM averaged over 2000

simulations. For pattern 3 (mixed frequency), "h/l" denotes the root mean squared error of the estimated factors of

integer periods and non-integer periods, respectively. Integer periods are those periods when both the high frequency

series and the low frequency series are observable.
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Figure 6: Confidence Intervals for the Factors by NNEM

Pattern 1,  = 200  = 200 Pattern 2,  = 200  = 200

Pattern 3,  = 200  = 200 Pattern 4,  = 200  = 200

Notes: These are the 95% confidence intervals for the true factor process from  = 1 to  = 50. The confidence

intervals are calculated by NN-EM. The solid curve in the middle is the true factor process.

Table 3: Root Mean Squared Error of the Estimated Loadings

Pattern 1 Pattern 2 Pattern 3 Pattern 4

  NN NN-EM NN NN-EM NN(h/l) NN-EM(h/l) NN NN-EM

50 100 0.461 0.141 0.482 0.148 0.199/0.548 0.098/0.180 0.360 0.125

100 100 0.382 0.142 0.421 0.149 0.14/0.614 0.098/0.199 0.315 0.125

200 200 0.316 0.099 0.295 0.094 0.114/0.458 0.072/0.119 0.292 0.090

400 200 0.333 0.101 0.343 0.105 0.111/0.418 0.068/0.112 0.266 0.086

Notes: These are the root mean squared errors of the estimated loadings calculated by NN or NN-EM averaged over

2000 simulations. For pattern 3 (mixed frequency), "h/l" denotes the root mean squared error of the estimated loadings

of the high frequency units and the low frequency units, respectively.
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Table 4: Coverage Rates of Confidence Intervals

Pattern 1 Pattern 2 Pattern 3 Pattern 4

  ̂+1| ̂+1| ̂+1| ̂ ̂+1| ̂
50 100 0.955 0.950 0.957 0.945 0.957 0.956

100 100 0.950 0.952 0.954 0.932 0.956 0.948

200 200 0.953 0.953 0.956 0.944 0.958 0.950

400 200 0.942 0.947 0.954 0.938 0.949 0.951

Notes: These are the coverage rates of 95% confidence intervals for the conditional mean and the average treatment

effect. The factors and loadings are estimated by NN-EM.

7 Empirical Illustration

In this section we apply our method to the grant allocation data of Fouirnaies and Mutlu-Eren (2015)

to test the average treatment effects of partisan alignment.

7.1 Data

Fouirnaies and Mutlu-Eren (2015) argue that in England the government parties have incentives to

allocate more resources to local councils that are controlled by their own party, since local govern-

ments are mainly funded by the central government and voters’ assessment of the party at the local

level has spillover effects on the assessment of the party at other levels of government. Fouirnaies

and Mutlu-Eren (2015) collect the data of the partisan control of each local council and the specific

grants per capita allocated to each local council for 460 local councils in England from 1992 to 2012,

and they find that partisan alignment indeed brings local councils more resources and the alignment

effect peaks in the third year after alignment.

In this application, the outcome variable  is the logarithm of specific grants per capita allocated

to a local council  at period , with ( ) = (460 21). At time , council  is considered as treated

( = 0) if the government party controls the majority of council . Since both  and  have

missing observations for some ( ) and we do not know whether council  at period  is treated or

not if  is missing, we focus on the data when  is observed and  = 1 (untreated).

7.2 Estimation

Given { }  we can use the data with  = 1 to estimate the factors and loadings. Once we

have the estimated factors and loadings (̂ and ̂), we impute the untreated potential outcome

of the treated  (i.e.,  = 0) by ̂(0) = ̂
0
̂, and the individual treatment effect is estimated

by ̂  =  − ̂(0) for all ( ) with  = 0 Regarding the number of factors , for each  we
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randomly cover  with probability 0.2, estimate the model using the uncovered , and then use

the estimated factors and loadings to impute the covered  and calculate the out-of-sample RMSE.

This procedure is repeated 50 times and the average out-of-sample RMSE for  = 1, 2, 3, 4 and 5

is 0.454, 0.331, 0.332, 0.437 and 0.555, respectively. Based on the cross-validation method of Jin et

al. (2021) for the determination of the number of factors, we can estimate  by 2, which yields the

smallest out-of-sample RMSE. As a robustness check, we shall focus on the results for  = 2, 3 and

4.

To see how the partisan alignment treatment effect evolves over time, we group ̂  according

to the number of periods relative to the onset of the treatment and then we calculate the average

treatment effect of each group. For example, if council 1 starts treatment at  = 5, council 3 starts

treatment at  = 9 and council 5 starts treatment at  = 3, then ̂15, ̂39 and ̂53 are in the same

group. Let  denote the number of periods relative to the onset of the treatment and [  denote

the corresponding group average of the treatment effects. An advantage of [  is that it clearly

shows the dynamics of the average treatment effect over time while allowing the individual treatment

effect to be different across both individuals and time.

The top-left block of Table 5 presents [  and its t-statistic for  = 1 2 3 4 and  = 2 3 4.

It is clear that the t-statistic of [  is significant at the 5% level in all cases, and [  increases

with  initially and peaks at  = 3, which is consistent with the finding of Fouirnaies and Mutlu-Eren

(2015). The latter authors consider a panel regression with council-specific linear time trends and a

two-way fixed effects. The fact that [  peaks at  = 3 shows that there is an implementation delay

or the government party strategically schedules the grant boost in the electoral cycle to maximize

the election effect.

The middle-left block of Table 5 presents [  and its t-statistic for  = −1, −2, −3 and −4.
[−1 is the average treatment effect of the last untreated period before the onset of the treatment,

and [−2, [−3, and [−4 are defined analogously. It is clear that {[   = −1 −4}
are all close to zeros and mostly insignificant at the 5% level, which confirms that there is no pre-

trend unaccounted by the factor structure. In general, {[   = −1 } could also help the
researchers to test for the anticipation effects or evaluate the validity of the identification conditions.

The bottom-left block of Table 5 presents [  and its t-statistic for  = +1, +2, +3 and +4.

[+1 is the average treatment effect of the first untreated period after the end of the treatment,

and [+2, [+3, and [+4 are defined analogously. {[   = +1 +4} may deviate from
zeros if the treatment has carryover effects or there are time-varying confounders unaccounted by the
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factor structure. From the bottom-left block of Table 5 we can see that {[   = +1 +4} are
also close to zeros and mostly insignificant at the 5% level, especially when  = 3 and 4.

Since the middle-left block and the bottom-left block of Table 5 are in-sample results, we also

calculate {[   = −1 −4} and {[   = +1 +4} using the out-of-sample imputation
errors. More specifically, for each , we cover the data of  at the model estimation stage if  is

the ||-th period after the end (resp., before the onset) of the treatment of unit , and then use the
estimated factors and loadings to impute the covered  and calculate the out-of-sample imputation

error ̂ . The middle-right block and the bottom-right block of Table 5 present the out-of-sample

[  and its t-statistic for  = −1 −4 and  = +1 +4, respectively.

We summarize some important findings from the right panel in Table 5. First, we can see that

the results of  = 3 and  = 4 are consistent with each other whereas the results of  = 2 tend to

overestimate the treatment effects. Similar patterns also appear in the other three blocks of Table

5. This suggests that  = 2 may underestimate the number of factors and the results of  = 3

and 4 are more trustworthy. Second, we can see that overall [−2, [−3 and [−4 are still

insignificant while [−1 becomes significant. The fact that [−1 is significantly positive indicates

that changes in the alignment status are related to grant allocation. For example, the government

party may strategically allocate more grants to some swing councils before local elections even if

those councils are controlled by different parties, and then the voters in those councils switch to the

government party after the local elections. In other words, on average aligned councils receive more

grants from the government party than unaligned councils, but unaligned swing councils also receive

more grants. Third, for the post-treatment periods, the bottom-right block of Table 5 shows that

[+3 and [+4 are clearly insignificant, while [+1 and [+2 are significant when  = 2,

marginally significant when  = 3 and insignificant when  = 4. This suggests that the carryover

effects of partisan alignment are not strong even if they exist. Overall, the out-of-sample results of

the pre-treatment periods and the post-treatment periods are similar to their in-sample counterparts,

except for [−1.

8 Conclusions

This paper develops an inferential theory for the least squares estimators of the factors and loadings

in a large dimensional factor model with missing data. To compute the least squares estimator,

this paper proposes to use the nuclear norm regularized estimator as the initial value for the EM

algorithm and iterate until convergence. Our results cover a wide range of missing patterns, includ-
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Table 5: Testing the Average Treatment Effects

Average Treatment Effect Dynamics

\ 1 2 3 4

2 0.085 0.089 0.116 0.050

(7.315) (7.263) (8.579) (2.152)

3 0.029 0.048 0.071 -0.087

(2.797) (4.442) (5.923) (-4.215)

4 0.055 0.072 0.094 -0.082

(6.066) (7.646) (8.937) (-4.526)

Average Treatment Effect Dynamics Out-of-sample Pre-treatment Results

-4 -3 -2 -1 -4 -3 -2 -1

2 -0.022 0.003 0.019 0.037 -0.059 -0.001 0.054 0.194

(-1.573) (0.186) (1.407) (2.878) (-4.102) (-0.057) (4.041) (15.27)

3 -0.014 -0.002 0.005 0.017 0.012 -0.001 0.006 0.136

(-1.081) (-0.144) (0.395) (1.448) (0.925) (-0.087) (0.528) (12.14)

4 -0.013 0.006 0.006 0.016 -0.011 0.010 -0.006 0.154

(-1.139) (0.059) (0.624) (1.600) (-0.978) (0.942) (-0.575) (15.69)

Average Treatment Effect Dynamics Out-of-sample Post-treatment Results

+1 +2 +3 +4 +1 +2 +3 +4

2 0.025 0.045 0.012 -0.005 0.072 0.061 0.014 -0.007

(1.629) (2.966) (0.710) (-0.249) (4.918) (4.032) (0.855) (-0.378)

3 -0.009 0.019 -0.003 -0.005 0.021 0.033 -0.001 -0.011

(-0.683) (1.412) (-0.210) (-0.298) (1.596) (2.49) (-0.066) (-0.721)

4 -0.008 0.010 -0.004 -0.002 -0.010 0.022 -0.006 0.003

(-0.688) (0.869) (-0.320) (-0.129) (-0.824) (1.890) (-0.489) (0.187)

Notes: The table presents the group average treatment effects and the corresponding t statistics (presented in the

parenthesis) of partisan alignment where the groups are determined by the number of periods relative to the onset

(end) of the treatment. The first column indicates the number of factors. The out-of-sample results in the middle-right

block and the bottom-right block are calculated by covering the corresponding period of data.
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ing heterogenous random missing, selection on covariates/factors/loadings, block missing, staggered

missing, mixed frequency and ragged edge. For the matrix completion literature, our results provide

a solution for the post nuclear norm regularization inference under missing patterns much more gen-

eral than existing studies. For mixed frequency factor models, our results provide the asymptotic

theory without aggregating the high frequency series into low frequency series. For panel data with

missing observations, our methods allow us to impute the missing values appropriately even when

the missing probability is correlated with the missing value. For causal inference, our results provide

confidence intervals for the average treatment effects of different groups and time periods.

There are some interesting topics for further research. First, we may extend our results to allow

for nonstationarity in the data. Second, our framework may also cover other missing patterns as long

as we can verify the RSC condition and prove that the Hessian is well-behaved. Third, it is possible

to extend our method to the framework of time-varying factor models as studied in Su and Wang

(2017, 2024) and Pelger and Xiong (2022), among others. Fourth, so far we focus on the pure factor

models, it would be interesting to add covariates and extend our theory to panel data with IFEs.

Fifth, the technique developed in this paper is of independent interest and can be extended to more

general setups that include nonlinear factor models with missing values and nonlinear panels with

IFEs and missing values. We leave these topics for future research.
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This online supplement is composed of five sections. Sections A—D contain the proofs of Theorems

4.1—5.1, respectively. Section E contains the proof of Proposition 5.1.

A Proof of Theorem 4.1

To prove Theorem 4.1, we introduce the following two lemmas.

Lemma A.1 Suppose Assumption 4 holds. Then as ( ) → ∞, k ◦ k = (
1
2

1
4 +

1
4

1
2 ),2

where ◦ denotes the Hadamard product so that  ◦  is a  ×  matrix with  as the ( )th

element.

Proof. Note that

k ◦ k4 =
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where we also use the fact that max |( )| ≤ max ( ) ≤  by the Cauchy-Schwarz (CS)

inequality. Then E k ◦ k4 = ( 2 +2 ) and the result follows by the Markov inequality.

Lemma A.2 Suppose Assumption 2(i) holds. Then as ( ) → ∞, k− E()k = (
1
2

1
4 +


1
4

1
2 ), where − E() denotes the  × matrix with  − E() as the ( ) element.

2The rate (
1
2 

1
4 +

1
4 

1
2 ) is not sharp, but is enough for our purpose. If  is independent across  and 

and its fourth moment is uniformly bounded over  and , results in random matrix theory show that this rate can be

improved to (
1
2 + 

1
2 ).
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Proof. Recall that ̃ =  − E() As in Lemma A.1, we have

k− E()k4 =
°°(− E())0(− E())°°2 ≤ °°(− E())0(− E())°°2

=
X

=1
(
X

=1
̃̃)

2

Since ̃ is independent across  conditional on 0, we have

E k− E()k4 ≤ 2
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The first term on the right hand side (RHS) of the above equation is bounded by 2
P

=1

P
=1 1 =

2 2 and the second term is bounded above by

22
X

=1
| ( )| = (

2 )

under Assumption 2(i). It follows that E k− E()k4 = (
2 + 2 ) and k− E()k =

(
1
2

1
4 +

1
4

1
2 ).

Proof of Theorem 4.1.

(1) The random missing case. Let ̂ = ̂ 0̂ and 0 = 00 
0
 . Since  (̂ ̂) = 0 and

 (0 0) = 0,

(̂ ̂)−(0 0) =
X

=1

X

=1
(̂ − 0)−

1

2

X

=1

X

=1
(̂ − 0)

2 ≥ 0 (A.1)

Let Θ̂ (resp. Θ0) denote the  ×  matrix with ( )th element given by ̂ (resp. 0) Since

rank(Θ̂−Θ0) ≤ 2 and |()| ≤ () kk kk , we have¯̄̄̄X

=1

X

=1
(̂ − 0)

¯̄̄̄
≤ 2 k ◦ k [
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(̂ − 0)

2]
1
2  (A.2)

By the submultiplicative property of the Hadamard product (see, e.g., Theorem 5.1.7 in Horn and

Johnson (1991)), rank((Θ̂−Θ0) ◦ (Θ̂−Θ0)) ≤ 42. Then
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where the second inequality holds by the fact that 0 is bounded by Assumption 1 and ̂ is bounded

by design. It follows that

2 k ◦ k [
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where the first inequality holds by (A.2) and (A.3), the second one holds by (A.1), and the last one

holds by the assumption that E() ≥  for all ( ). Then by Lemmas A.1—A.2, we have
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Let 1   and ̂1  ̂ denote the first  largest singular values of
 0Λ00√


and ̂ Λ̂0√

, respectively,

ordered from the largest to the smallest. Let 1   and ̂1  ̂ denote the corresponding left-

singular vectors. By the Davis-Kahan theorem (see, e.g., Yu, Wang and Samworth (2015)),

k̂ − k ≤
√
2



°°°°° ̂ Λ̂0√

−  0Λ00√



°°°°° ≤
√
2



°°°°° ̂ Λ̂0√

−  0Λ00√



°°°°°
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where  = min{|−1 − ̂ | ∧ |+1 − ̂ |   = 1  }.  is bounded and bounded away from zero

in probability because (1)    ∈ [] are all bounded and bounded away from zero in probability,

and  are different by Assumptions 3, (2) by Weyl’s inequality, | − ̂ | ≤
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) for all  ∈ []. Thus max∈[] k̂ − k = (
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). From the conditions (2.7) and (2.6),
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By symmetry, we also have
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√
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).

(2) The block missing/staggered missing/mixed frequency case. Note that missing only

occurs for    which implies that  = 1 for all  ∈ [] and  ∈ [ ]  For    define

T = { ∈ [ ]   = 1}  Clearly, T = [] for the block missing case, T ⊇ [] for the staggered
treatment case, and T = { ∈ [ ]   is an integer} where  denotes the frequency ratio (e.g.,  = 3
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when we have monthly and quarterly data). Then equation (A.1) becomes
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We consider two cases:

Case (a):
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In Case (a), we have
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where the second inequality follows from equation (A.6), and the first one holds by the fact that
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by (A.7) and similar arguments as used to obtain (A.3). Then by (A.9) and Lemma A.1
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which, in conjunction with (A.7), further implies that
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Given that  and  are bounded away from zero, equation (A.10) implies ||̂ − 0|| =
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Similarly, we can show that ||̂ − 0|| = (
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) in Case (b). ¥

B Proof of Theorem 4.2

To proceed, we introduce some notations associated with the Hessian matrix of  ()  Define

0() = 0() + 0(), (B.1)

0 () = 0(), (B.2)

0() = 0() = 0() + 0() + 0(), (B.3)

0() =
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#
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#
 (B.4)
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#
 (B.5)

When these matrix are evaluated at the true value 0, we suppress the argument. That is, we simply

write 0(
0) 0(

0) 0(
0) and 0(

0) as 0 , 0  0  and 0  respectively. Note

that 0 is an  ×  block-diagonal matrix, with the th diagonal block of size  ×  given by

−P
=1 

0
 

00
 ;  0 is a  ×  block-diagonal matrix with the -th diagonal block of size  × 

given by −P
=1 

0

00
 ;  0 is of dimension  ×  with the ( )th block of size  ×  given by

−0 00 ; 0 is the transpose of  0 .  0 is also  ×  with the ( )th block of size  × 

given by ; 0 is the transpose of  0 .

Define

1 =

"
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0 0

#
, 2 =

"
0 0

0  ⊗ 

#
 and 3 =

"
 ⊗  0

0 − ⊗ 

#


where  is an × matrix with the -th diagonal element being one and all the other elements being

zero, and  is an  ×  matrix with the ( ) element and the ( ) element being one and all the

other elements being zero. Define the following three sets of ( + )× 1 vectors:

 : For 1 ≤  ≤ ,  is an  +  dimensional vector; for the first  elements, in the -th

block, the -th element is  and all the other elements are zeros; for the last  elements, in

the -th block, the -th element is − and all the other elements are zeros.

 : For 1 ≤    ≤ ,  is a +  dimensional vector; the last  elements are all zeros; for

the first  elements, in the -th block, the -th element is , the -th element is  and all
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the other elements are zeros.

 : For 1 ≤    ≤ ,  is a  +  dimensional vector; the first  elements are all zeros;

for the last  elements, in the -th block, the -th element is , the -th element is  and

all the other elements are zeros.

When  = 0 and  = 0 so that  = 0, ,  and  are denoted as 
0
, 

0
 and 0,

respectively. One can verify that

0 [(

P
=1 

2



−
P

=1 
2



)2] = 8−1

0


−1
 + 4(

P
=1 

2



−
P

=1 
2



)−13 (B.6)

0 [(
X

=1
)

2] = 2[
0
 + (

X

=1
)1] (B.7)

0 [(
X

=1
)

2] = 2[
0
 + (

X

=1
)2] (B.8)

Since 1

 00 0 = 1


Λ00Λ0 and both are diagonal, the second term on the RHS of equations (B.6)-(B.8)

are zeros when  is evaluated at the true value 0 It follows that

0 = −
1
2


− 1
2

 (
X

=1
0

00
 +

X

=1

X

=+1
0

00
 +

X

=1

X

=+1
0

00
)

−1
2


1
2



= −
1
2


− 1
2


000

−1
2


1
2

  (B.9)

where

0 = (011  
0
;

0
12  

0
1 

0
23  

0
2  

0
(−1);

0
21  

0
1 

0
32  

0
2  

0
(−1))

≡ (00  
00
 )

0 (B.10)

Here, 0 is an ( + )× 2 matrix, 0 contains the first  rows of 0 and 0 contains the last

 rows.

Lemma B.1 Suppose that Assumptions 1, 2(i) and 3 hold. Then ||(−−
1
2

0
−1
2

 )
−1|| = (1)

as ( )→∞.

Proof. To proceed, we introduce an ( + )×2 matrix 0 which specifies the null space of 0

and plays an essential role in the following analysis. For 1 ≤    ≤ , 0 is a (+)×1 vector:
for the first  elements, in the -th block, the -th element is 0 and all the other elements are

zeros; for the last  elements, in the -th block, the -th element is −0 and all the other elements
are zeros. 0 is also an ( + )× 1 vector: for the first  elements, in the -th block, the -th

element is 0 and all the other elements are zero; for the last  elements, in the -th block, the -th

6



element is −0 and all the other elements are zero. Let

 0 ≡ (011  
0
;

0
12  

0
1 

0
23  

0
2  

0
(−1);

0
21  

0
1 

0
32  

0
2  

0
(−1))

≡ ( 00
  00

 )
0 (B.11)

Here,  0
 contains the first  rows of  0 and  0

 contains the last  rows. It is not difficult

to verify that any two different columns of  0 are orthogonal to each other, the ( )-th block of

 0


00
 of size  ×  is −0 00 ,

0
0 = 0 and 0

0 = 0. (B.12)

Let ̄0 = E(0) and define ̄0 , ̄0 , ̄ 0 and ̄ 0 similarly. Let 1 denote  × 1
vector with the -th element being one and all the other elements being zero. Let ̆0 = ̄0 −


1
2


− 1
2


0 00

−1
2


1
2

 . Then by (B.3) we have

0 = ̆0 + [0 + 
1
2


− 1
2


0 00

−1
2


1
2

 ] + (0 − ̄0) + 0  (B.13)

where

−̆0 =
X

=1

X

=1
(E()− )

Ã
1 ⊗ 0

1 ⊗ 0

!Ã
1 ⊗ 0

1 ⊗ 0

!0

+

Ã


 0


00
 0

0 

 0


00


!
+

Ã
 ⊗ 

P
=1 

0
 

00
 0

0  ⊗ 
P

=1 
0

00


!
 (B.14)

We will study each term on the RHS of (B.13). In Step (1.1)—(1.3), we study ̆0  0  and

0 − ̄0 in order. In Step (2), we focus on 0 + 
1
2


− 1
2


0 00

− 1
2


1
2

 

Step (1.1). We study ̆0  It’s easy to see that the first two terms on the RHS of (B.14)

are positive semi-definite. This implies that min(−−
1
2

̆0
− 1
2

 ) is bounded away from zero in

probability by Assumption 1.

Step (1.2). We study 0 . Since ||
− 1
2

0
− 1
2

 || is bounded by 2√


k ◦ k, by Lemma A.1
we have °°°°− 1

2

0
− 1
2



°°°° = ( )−12(
1
2

1
4 +

1
4

1
2 )) = (

1√


) (B.15)

Step (1.3). We study 0 − ̄0 and show°°°°−1
2

 (0 − ̄0)
− 1
2



°°°° = (


1
√

+


1
√

+

1√


) (B.16)
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By (B.4), it suffices to prove (B.16) by showing that

°°0 − ̄0
°° = (

√


1
 ) (B.17)°° 0 − ̄ 0

°° = (
√


1
 ) (B.18)°° 0 − ̄ 0

°° = (

√
√


) (B.19)

The proof of (B.19) is similar to that of Lemma A.2. The ( )th block of  0 − ̄ 0 of size  × 

is (−E())0 00 , the ( )th block of ( 0 − ̄ 0)
0( 0 − ̄ 0) of size ×  is

P
=1 ̃̃,

where ̃ =  − E() and  = 0 
00
 

0
 

00
  Let  denotes the ( )th element of  LetP

=1 =
P

=1

P
=1 and

P
=1 =

P
=1

P
=1  Then

E(
°° 0 − ̄ 0

°°4)
= E(

°°( 0 − ̄ 0)
0( 0 − ̄ 0)

°°2) ≤ E(°°( 0 − ̄ 0)
0( 0 − ̄ 0)

°°2

)

=
X

=1

X

=1
E(

X

=1
̃̃)

2

≤ 2
X

=1

X

=1
E{

X

=1
[̃̃ − E(̃̃)]}2 + 2

X

=1

X

=1
[
X

=1
E(̃̃)]

2

= 2
X

=1

X

=1

X

=1
E[̃̃ − E(̃̃)]22 + 2

X

=1

X

=1
[
X

=1
E(̃̃)]

2

≡ 2∆11 + 2∆12

where the third equality follows from the conditional independence condition over  in Assumption

2(i). It is easy to see that

E (∆11) ≤
X

=1

X

=1

X

=1
E(2) = ( 2) and

∆12 =
X

=1

X

=1
[
X

=1
E(̃̃)

0


00
 

0
 

0
]
2

≤ 2
X

=1
 ( ) = 

¡
2

¢


It follows that E(
°° 0 − ̄ 0

°°4) = (
2+2 ) and

°° 0 − ̄ 0
°° = (

1214+12 14) =

(
√
√


) This proves (B.19). For equation (B.17), we have

°°0 − ̄0
°° = (max



°°°°X

=1
[ − E()]0 00

°°°°) 1
= (

X

=1

°°°°X

=1
[ − E()]0 00

°°°°) 1 = (
√


1
 ) (B.20)

The last equality is due to E( 1


P
=1

°°° 1√


P
=1[ − E()]0 00

°°°) = (1) by Assumption 2(i).

Analogously, we can prove (B.18). Then the result in (B.16) holds.
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Step (2). We study 0 + 
1
2


− 1
2


0 00

− 1
2


1
2

 on the RHS of (B.13) and show that it

is asymptotically negligible in comparison with the other terms. The proof is similar to step (2) of

Lemma 2 in Wang (2022) and we present it for completeness. Since the columns in 0 are orthogonal

to each other and also orthogonal to ̄0 , the positive definiteness of −
−1
2

̆0
− 1
2

 implies that the

eigenvectors of 
− 1
2

 ̄0
−1
2

 together with {−
1
2


0
||

− 1
2


0
||  ∈ []}, {

− 1
2


0
||

− 1
2


0
||

 ∈ []  = +1  } and {−
1
2


0
||

− 1
2


0
||  ∈ []  = +1  } constitutes an orthonormal

basis. Under this basis, for  ∈ [] and  =  + 1  , let (01  
0
(+ )−(−1)) denote

the coordinates of 0 corresponding to the eigenvectors of 
−1
2

 ̄0
− 1
2

 and 
− 1
2


0
||

−1
2


0
||,

and let 0 and 0 denote the coordinate of 
0
 corresponding to 

− 1
2


0
||

− 1
2


0
|| and


−1
2


0
||

−1
2


0
|| respectively. The coordinates of 0 are defined in the same way.

To prove the lemma, it suffices to show that there exists   0 such that for any vector  with

kk = 1, 0(−−
1
2

0
− 1
2

 ) ≥   0 w.p.a.1 as ( )→∞. Let

(1  (+ )−(−1); 12  1 23  2  (−1); 21  1 32  2  (−1))

be the coordinates of . Plugging this into (B.13), we have

0(−−
1
2

0
−1
2

 ) = 0(−−
1
2

 ̄0
−1
2

 )+ 0(−−
1
2

0
−1
2

 )

−0(−
1
2

 (0 − ̄0)
− 1
2

)− 0(
− 1
2

0
−1
2

 )

= 0(−−
1
2

 ̄0
−1
2

 + 
X

=1

− 1
2


0


00


− 1
2

 ) (B.21)

+0[
X

=1

X

=+1
(
0

00



+

0
00



)] (B.22)

−0(−
1
2

 (0 − ̄0)
− 1
2

)− 0(
− 1
2

0
−1
2

 ) (B.23)

The term (B.21) is not smaller than 
P(+ )−(−1)

=1 2 w.p.a.1 because the smallest nonzero eigen-

value of −−
1
2

 ̄0
− 1
2

 + 
P

=1
− 1
2


0


00


− 1
2

 is not smaller than min(−−
1
2

̆0
−1
2

 ). The

term in (B.22) is not smaller than 1
P

=1

P
=+1[

(00

)2


+

(00

)2


] for some 0  1  . How to

choose 1 will be discussed later. For 
00 , we have

(00)
2 ≥ [

X

=1

X

=+1
(

0
 + 

0
)]

2 − 2(
X(+ )−(−1)

=1
2 )

1
2

°°0°°2 .
Thus the term (B.22) is not smaller than

1
X

=1

X

=+1
{ 1

[
X

=1

X

=+1
(

0
 + 

0
)]

2

9



+
1


[
X

=1

X

=+1
(

0
 + 

0
)]

2} (B.24)

−21(
X(+ )−(−1)

=1
2 )

1
2

X

=1

X

=+1
(
1



°°0°°2 + 1



°°0°°2). (B.25)

By Assumption 1, expression (B.25) is not smaller than −21(−1)(
P(+ )−(−1)

=1 2 )
1
2 for some

 ∞ w.p.a.1. To evaluate the expression in (B.24), let

∗ = (
0
12  

0
1;

0
23  

0
2; ;

0
(−1);

0
21  

0
1;

0
32  

0
2; ;

0
(−1))

0

Define ∗ similarly. The dimension of 
∗
 is

(−1)
2

+
(−1)
2

= ( − 1). Let

∗ = [− 1
2 (∗12  

∗
1;

∗
23  

∗
2; ;

∗
(−1));

− 1
2 (∗21  

∗
1;

∗
32  

∗
2; ;

∗
(−1))]

Then the term in (B.24) is not smaller than 1min(
∗∗0)

P
=1

P
=+1(

2
+2). Under Assump-

tions 1 and 3, ∗ is full rank. which is to be proved later. Thus ∗∗0 is positive definite.

This implies that there exists   0 such that min(
∗∗0) ≥  w.p.a.1 as ( )→∞. It follows

that expression (B.24) is not smaller than 1
P

=1

P
=+1(

2
 + 2) w.p.a.1. Finally, equations

(B.15)-(B.16) imply that the term (B.23) is (


1
√

+ 

1
√

+ 1√


). Then the term term in (B.23) is

not larger than 1
3
w.p.a.1.

Combining the above analyses, we have that w.p.a.1,

0(−−
1
2

0
− 1
2

)

≥ 
X(+ )−(−1)

=1
2 + 1

X

=1

X

=+1
(2 + 2)

−21( − 1)(
X(+ )−(−1)

=1
2 )

1
2 − 1

3

= (− 1)
X(+ )−(−1)

=1
2 + 1 − 21( − 1)(

X(+ )−(−1)
=1

2 )
1
2 − 1

3

≥ 1 − 21
2( − 1)22

− 1
− 1

3

=
1( − 1

2 − 1
2( − 1)22)

− 1
− 1

3
. (B.26)

When 1 is small enough, 1
2 + 1

2(− 1)22 is smaller than 
2
. Thus when 1 is small enough,

the term on the RHS of (B.26) is not smaller than 1
6
. Taking  = 1

6
, we have proved that

0(−−
1
2

0
− 1
2

) ≥  w.p.a.1.

Now, we prove the full rankness of ∗. We shall prove this explicitly for the case of  = 3;

the other cases can be shown similarly. When  = 3, after some calculation, we find that ∗ is given

10



by ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1



=1(

0
2)

2− 12
012

 0 0
− 1



=1(

0
1)

2− 12
012

 0 0

0
1



=1(

0
3)

2− 12
013

 0 0
− 1



=1(

0
1)

2− 12
013

 0

0 0
1



=1(

0
3)

2− 12
023

 0 0
− 1



=1(

0
2)

2− 12
023


1



=1(

0
1)

2− 12
021

 0 0
− 1



=1(

0
2)

2− 12
021

 0 0

0
1



=1(

0
1)

2− 12
031

 0 0
− 1



=1(

0
3)

2− 12
031

 0

0 0
1



=1(

0
2)

2− 12
032

 0 0
− 1



=1(

0
3)

2− 12
032



⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Note that 1


P
=1(

0
)

2 = 1


P
=1(

0
)
2 for  = 1 2 3. Now consider (∗) = 0 for any

vector . If  1


P
=1(

0
1)
2 6=  1



P
=1(

0
2)
2, then 1 = 4 = 0. If  1



P
=1(

0
1)
2 6=

 1


P
=1(

0
3)
2, then 2 = 5 = 0. If 

1


P
=1(

0
2)
2 6=  1



P
=1(

0
3)
2, then 3 = 6 = 0.

Thus  = 0 by Assumption 3.

Lemma B.2 Suppose that Assumptions 1, 2(ii) and 3 hold. Then as ( ) → ∞, we have
||(−−

1
2

 0
− 1
2

 )
−1|| = (1) and ||(−−

1
2

0
−1
2

 )
−1|| = (1), where

 =

"
 ⊗

P
=1 

0
 

00
 0

0  ⊗
P

=1 
0

00


#
 (B.27)

Proof. For the random missing case, we directly use 
− 1
2

 to normalize 0 ; here it is crucial

to use 
−1
2

 . For the random missing case, we first prove that min(−−
1
2

̆0
− 1
2

) is positive

and bounded away from zero in probability, and then prove that the conclusion still holds when


−1
2


0 00

− 1
2

 is replaced by 
− 1
2


000

− 1
2

 . For the block missing/staggered missing/mixed

frequency case, the roadmap is similar, but the technical details are quite different. A key strategy

utilized in the proof of Lemma B.1 is that E()    0 uniformly over  and , which is no longer

true for the block/staggered missing case because  is always zero for some  and .

The key step is to calculate all the eigenvalues of −−
1
2

 0
− 1
2

 . To do so, we distinguish

between the block missing case and the staggered missing case. The results for the former case are

summarized in equation (B.42) below and we have confirmed that these calculated eigenvalues are

correct using MATLAB program. To help the readers to understand the proof, we also add the proof

for the simple case with  = 1 after we present the proof for the general case with  ≥ 1.
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Step (1) We show that all of the nonzero eigenvalues of −−
1
2

 0
−1
2

 are positive

and bounded away from zero w.p.a.1.

(I) The block missing case

Step (1.1). Note that −0 = −0 − (−0) where

−0 =

"
 ⊗

P
=1 

0
 

00
 (0 

00
 )×

(0 
00
 )×  ⊗

P
=1 

0

00


#
 (B.28)

−0 =

⎡⎢⎢⎢⎢⎣
0× 0× 0× 0×

0×  ⊗
P

=+1
0 

00
 0× (0 

00
 )×

0× 0× 0× 0×

0× (0 
00
 )× 0×  ⊗

P
=+1

0
00


⎤⎥⎥⎥⎥⎦ (B.29)

 =  −,  =  −  and (
0
 

00
 )× denotes the  ×  matrix with 0 

00
 as the

( ) block for  = +1   and  = +1   . In the following we shall calculate all eigenvalues

of −−
1
2

 0
− 1
2

 .

First, let  = (
P

=1 
0
 

00
 )
−1
2 0 and  = (

P
=1 

0

00
 )
− 1
20 denote the normalized factors and

loadings. −−
1
2

 0
− 1
2

 and −−
1
2

 0
− 1
2

 has the same expressions as (B.28) and (B.29),

respectively, once we replace 0 by  and 0 by  . Similarly, we define 
, 


 and 

 by

replacing 0 by 

 and 0 by 


 in 0, 

0
 and 0. Let

 = (
11  


;


12  


1 


23  


2  


(−1);


21  


1 


32  


2  


(−1))

≡ (0
 0

 )
0 (B.30)

It is not difficult to verify that any two different columns of  are orthogonal to each other, any

column of  is orthogonal to both −−
1
2

 0
−1
2

 and −−
1
2

 0
− 1
2

 . We can also verify

that the ( )th block of 


0
 is − 0 and 0 =

P
=1

P
=1




0
.

For   ∈ [], let 
 denote the -th block of 


 of size  × 1. [Each block is an  × 1 vector

and there are  +  blocks in total.] Let 


= (0
1  

0


)0, 


= (0
+1

  0
)

0,




= (0
+1  

0
+

)0, 


= (0
++1

  0
+ )

0, 
 = (0


 0


)0 and


 = (

0


 0


)0 Then 
 can be written as (

0
 

0
 )

0 and

−−
1
2

 0
− 1
2

 −
Ã




−


!Ã




−


!0

=

"
 ( 

0
 )×

( 
0
 )× 

#
−
Ã




−


!Ã




−


!0

12



=

"
 −

P
=1

P
=1




0
 0×

0×  −
P

=1

P
=1




0


#

=

" P
=1

P−
=1 ( ⊗ 1)( ⊗ 1)0 0×
0×

P
=1

P−
=1 ( ⊗ 1)( ⊗ 1)0

#
 (B.31)

where 1 denotes the  × 1 vector with the -th element being one and all the other elements being
zero, and the last equality is due to:

(1)  =
P

=1  ⊗ , where  is an ×  matrix with the -th diagonal element being one and

all the other elements being zero;

(2) {   ∈ [ − ]} and {· ≡ (1  )
0  ∈ []} together constitute an orthonormal basis

for the  dimensional vector space; Since  =
P−

=1 
0
 +

P
=1 


·

0
· and 

 = · ⊗ 1,
we have

 ⊗  −
X

=1



0
 =

X−
=1

( ⊗ 1)( ⊗ 1)0;

(3) Similarly, {   ∈ [−]} and {· ≡ (1  )0  ∈ []} together constitutes an orthonormal
basis for the  dimensional vector space. Since  =

P−
=1 

0
 +

P
=1 

·0· and 
 =

· ⊗ 1, we have

 ⊗  −
X

=1



0
 =

X−
=1

( ⊗ 1)( ⊗ 1)0

How to choose  and  will be discussed later.

Step (1.2). Similarly, we also have

−−
1
2

 0
− 1
2

 −3

=

⎡⎢⎢⎢⎢⎣
0 0 0 0

0  ⊗
P

=+1
 

0
 0 ( 

0
 )×

0 0 0 0

0 ( 
0
 )× 0  ⊗

P
=+1

 
0


⎤⎥⎥⎥⎥⎦−3=

⎡⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 2

⎤⎥⎥⎥⎥⎦ (B.32)

where the dimension of the zero matrices are self-evident, the second equality is due to −P
=1

P
=1




0


= ( 
0
 )×, and

1 =  ⊗
X

=+1
 

0
 −

X

=1

X

=1

°°


°°2 
°°°


°°°
0
°°°


°°° 
2 =  ⊗

X

=+1
 

0
 −

X

=1

X

=1

°°


°°2 
°°°


°°°
0
°°°


°°° 
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3 =
X

=1

X

=1
3

0
3

3 ≡ (01×

°°°


°°°°°°


°°°0


 01×−

°°°


°°°°°°


°°°0


)0

Without loss of generality, we can consider
P

=+1
 

0
 and

P
=+1

 
0
 as diagonal. For exam-

ple, if
P

=+1
 

0
 is nondiagonal, we can replace  by 


 = Γ0

 = Γ
0


(
P

=1 
0
 

00
 )
− 1
2 0 ,

where Γ is the eigenvector matrix of
P

=+1
 

0
 . This makes

P
=+1

 0 diagonal and

does not change the eigenvalues. When
P

=+1
 

0
 is diagonal,

 ⊗
X

=+1
 

0
 =

X

=1
(
X

=+1
()

2) ⊗ 

For each given , 


= ((+1)
  )

0 ⊗ 1 and
°°°



°°°2 =P
=+1

()
2 for all  ∈ []. It

follows that

1 =
X

=1
(
X

=+1
()

2) ⊗ 

−
X

=1

X

=1
(
X

=+1
()

2)

°°°


°°°
0
°°°


°°°
=

X

=1
(
X

=+1
()

2)[ ⊗  −
X

=1


°°°


°°°
0
°°°


°°° ]
=

X

=1
(
X

=+1
()

2)[
X−

=1
( ⊗ 1)( ⊗ 1)0] (B.33)

where {   ∈ [−]} and { ≡ ((+1)
  )

0  ∈ []} together constitute an orthonormal
basis for the  dimensional vector space. Similarly, when

P
=+1

 
0
 is diagonal,

 ⊗
X

=+1
 

0
 =

X

=1
(
X

=+1
()

2) ⊗ 

For each given , 


= (
(+1)

  )
0 ⊗ 1 and

°°°


°°°2 = P
=+1

()
2 for all  ∈ [].

Thus

2 =
X

=1
(
X

=+1
()

2) ⊗ 

−
X

=1

X

=1
(
X

=+1
()

2)

°°°


°°°
0
°°°


°°°
=

X

=1
(
X

=+1
()

2)[ ⊗  −
X

=1


°°°


°°°
0
°°°


°°° ]
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=
X

=1
(
X

=+1
()

2)[
X−

=1
( ⊗ 1)( ⊗ 1)0] (B.34)

where {   ∈ [−]} and { ≡ ((+1)  )0  ∈ []} together constitute an orthonormal
basis for the  dimensional vector space.

Step (1.3). Since
P

=+1
 

0
 is diagonal, 

0



 = 0 for any  6= . Since

P
=1 


 

0
 = ,P

=1 

 

0
 is also diagonal, implying that 0


 = 0 for any  6=  where  ≡ (1  

)0.

Choose  such that {   ∈ [ − ]} and {  ∈ []} constitute an orthonormal basis for the
 dimensional vector space. Then the following set of vectors are orthonormal,

Ã


0×1

!
∈[−]



Ã
0×1
0

!
0∈[−]



⎛⎜⎝ kk
kk 




− k

k

kk



⎞⎟⎠
∈[]



Ã
0

0

!
0∈[]

 (B.35)

The first three sets contain  −  vectors in total, and we choose them as  for  ∈ [ − ].

Since
P

=+1
 

0
 is diagonal, 0


 = 0 for any  6= . Since

P
=1 


 

0
 = ,

P
=1 


 

0


is also diagonal, implying that 0 = 0 for any  6=  where  ≡ (1  )0. Choose  such
that {   ∈ [ − ]} and {  ∈ []} constitute an orthonormal basis for the  dimensional
vector space. Then the following set of vectors are orthonormal,

Ã


0×1

!
∈[−]



Ã
0×1
0

!
0∈[−]



⎛⎜⎝ kk
kk 




− k

k

kk



⎞⎟⎠
∈[]



Ã
0

0

!
0∈[]

 (B.36)

The first three sets contain  −  vectors in total, and we choose them as  for  ∈ [ − ].

In addition, we can see that the columns of

Ã




−


!
and

Ã







!
are

Ã



−


!
=

Ã
· ⊗ 1
· ⊗ 1

!
for   ∈ [] and (B.37)Ã







!
=

Ã
· ⊗ 1
−· ⊗ 1

!
for   ∈ [] (B.38)

respectively. The 22 vectors listed in expressions (B.37)-(B.38) are orthogonal to each other and

also orthogonal to the eigenvectors listed in expressions (B.35)-(B.36).

Let A ≡ −−
1
2

 0
− 1
2

 − (−
−1
2

 0 
− 1
2

 − 3). From expressions (B.31)-(B.38), we
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can see that the ( +  )  eigenvectors of A are given by

⎛⎜⎜⎜⎜⎝


0×1
0×1
0×1

⎞⎟⎟⎟⎟⎠⊗ 1
∈[−]∈[]



⎛⎜⎜⎜⎜⎝
0×1
0

0×1
0×1

⎞⎟⎟⎟⎟⎠⊗ 1
0∈[−]∈[]



⎛⎜⎜⎜⎜⎜⎜⎝

kk
kk 




−kk
kk 




0×1
0×1

⎞⎟⎟⎟⎟⎟⎟⎠⊗ 1



∈[]∈[]

Ã
· ⊗ 1
· ⊗ 1

!
∈[]∈[]



⎛⎜⎜⎜⎜⎝
0×1
0×1


0×1

⎞⎟⎟⎟⎟⎠⊗ 1
∈[−]∈[]



⎛⎜⎜⎜⎜⎝
0×1
0×1
0×1
0

⎞⎟⎟⎟⎟⎠⊗ 1
0∈[−]∈[]



⎛⎜⎜⎜⎜⎜⎜⎝
0×1
0×1
kk
kk 




−kk
kk 




⎞⎟⎟⎟⎟⎟⎟⎠
∈[]∈[]

⊗ 1
Ã

· ⊗ 1
−· ⊗ 1

!
∈[]∈[]

; (B.39)

and the corresponding eigenvalues are

1 for all  
((−) times)


P

=1(

)

2 for all 0
(− times for each )

 1 for all ( )
(2 times)

 2 for all ( )
(2 times)



1 for all  
((−) times)

P

=1(

)
2 for all 0

(− times for each )

1 for all ( )
(2 times)

0 for all ( )
(2 times)

 (B.40)

That is, among the ( +  )  eigenvalues of A ( + ) of them are 1, 2 of them 2, 2 of them

are 0, and the rest are also positive w.p.a.1.

Step (1.4). Now consider 3. Given that
°°°



°°° = °°

°°, °°°


°°° = °°

°°, 


=

 ⊗ 1 and 


=  ⊗ 1, we have

3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0×1

kk
kk




0×1

−k



k
kk




⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0×1

kk
kk


 ⊗ 1

0×1
kk
kk


 ⊗ 1

⎞⎟⎟⎟⎟⎟⎟⎠
=

°°

°°°°

°°

×

⎡⎢⎢⎢⎢⎢⎢⎣−
°°°°°°

°°
⎛⎜⎜⎜⎜⎜⎜⎝

kk
kk 




− k

k

kk



0×1
0×1

⎞⎟⎟⎟⎟⎟⎟⎠⊗ 1

 −

°°°°°°

°°
⎛⎜⎜⎜⎜⎜⎜⎝
0×1
0×1
kk
kk 




− k

k

kk



⎞⎟⎟⎟⎟⎟⎟⎠⊗ 1

 +
√
2

⎛⎝ ·⊗1√
2

·⊗1√
2

⎞⎠
⎤⎥⎥⎥⎥⎥⎥⎦ 

The eigenvalues of A corresponding to the three vectors in the square brackets of the last displayed

line are 1 1 and 2 respectively. After subtracting 3
0
3, only these three eigenvalues are affected,
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and they become the eigenvalues of ⎡⎢⎣
⎛⎜⎝ 1 0 0

0 1 0

0 0 2

⎞⎟⎠− 
0


⎤⎥⎦  (B.41)

where  ≡

⎛⎜⎝ −
°°

°°°°°°
−
°°°°°°

°°
√
2
°°

°°°°

°°
⎞⎟⎠  Obviously, the 3× 1 vector that is orthogonal to both (0 0 1)0

and  is an eigenvector of (B.41), and the corresponding eigenvalue is 1. The remaining two

eigenvectors of (B.41) should lie in the space orthogonal to this eigenvector, thus could be writ-

ten as linear combinations of (0 0 1)0 and , or (for simplicity) linear combinations of (0 0 1)0 and¡−°°

°°°°°° −°°°°°°

°°  0¢0. Suppose  is an eigenvector of (B.41) and  = (−
°°

°°°°°° 
−
°°°°°°

°°  0)0 +(0 0 1)0. Pre-multiplying  by (B.41), we have
− [(

°°

°°2 °°°°2 + °°°°2 °°

°°2) + 
√
2
°°

°°°°

°°] = 

2 −
√
2
°°

°°°°

°° [(°°

°°2 °°°°2 + °°°°2 °°

°°2) + 
√
2
°°

°°°°

°°] = 

where  represents the eigenvalue associated with the eigenvector . The solution of these two

equations are

1 ≡
°°°°2 + °°°°2 + 1

2
+

vuutÃ°°°°2 + °°°°2 + 1
2

!2
− 2

°°°°2 °°°°2
2 ≡

°°°°2 + °°°°2 + 1
2

−

vuutÃ°°°°2 + °°°°2 + 1
2

!2
− 2

°°°°2 °°°°2
Thus the three eigenvalues of (B.41) are (1 1 2). In summary, the eigenvalues of −−

1
2

 0
− 1
2



are:
1 for all  
((−))

P
=1(


)

2 for all 0
(− times for each )

2
for each ()

1
for each ()

1 for all  
((−))

P

=1(

)
2 for all 0

(− times for each )

1 for all ( )
(2 times)

0 for all ( )
(2 times)

 (B.42)

For each ( ), due to subtracting 3
0
3, the eigenvectors of the three bold blocks in expression

(B.42) are orthogonal rotations of the eigenvectors of the three bold blocks in expression (B.40). All

of the nonzero eigenvalues are positive and bounded away from zero w.p.a.1.

(II) The staggered missing case.

Let  and  denote the cardinality of { :  = 1 for all  ∈ [ ]} and { :  = 1 for all  ∈ [ ]},

17



respectively.

−0 =
X

≤  ≤


Ã
1 ⊗ 0

1 ⊗ 0

!Ã
1 ⊗ 0

1 ⊗ 0

!0

+
X

  


Ã
1 ⊗ 0

1 ⊗ 0

!Ã
1 ⊗ 0

1 ⊗ 0

!0
 (B.43)

If we throw away the entries of {( ) :    and   } so that the data matrix becomes a block
missing matrix, −0 would be equal to the first term on the RHS. Since the second term on the

RHS of (B.43) is positive semi-definite and we have proved the result for the block missing case, this

case is also proved.

Step (2). Step (1) shows that all of the nonzero eigenvalues of −−
1
2

 0
−1
2

 are positive and

bounded away from zero w.p.a.1. From expression (B.39) we know that the eigenvectors correspond-

ing to the 2 zero eigenvalues of −−
1
2

 0
− 1
2

 are {
Ã

· ⊗ 1
−· ⊗ 1

!
   ∈ []}, which are the

columns of 
− 1
2

 
0. Thus if we define ̆0 = 0 − 

1
2


−1
2

 
0 00

− 1
2

 
1
2

, then all eigenvalues

of −−
1
2

 ̆0
− 1
2

 are positive and bounded away from zero w.p.a.1. The rest of the proof is the

same as Step (2) of Lemma B.1 once we replace ̄0 by 0 ,  by  and  by  .

Combining the above results yields that ||(−−
1
2

 0
− 1
2

 )
−1|| = (1). Now, let Ξ =

−−
1
2

 0
− 1
2

  Noting that −
− 1
2

0
−1
2

 = 
− 1
2


1
2

Ξ
1
2


− 1
2

  we have

min(−−
1
2

0
− 1
2

 ) ≥ min (Ξ )min(
− 1
2


−1
2

 )

By Assumption 1, min(
− 1
2


− 1
2

 ) is bounded away from zero w.p.a.1. This, in conjunction with

the above conclusion on Ξ  implies that min(−−
1
2

0
−1
2

 ) is also bounded away from zero

w.p.a.1. Thus ||(−−
1
2

0
−1
2

 )
−1|| =  (1) 

Proof of Lemma B.2 for the simple case  = 1:

In this case, the above proof can be greatly simplified. Below we outline the key Steps (1.1)—(1.3).

Step (1.1). Note that −0 = (−0)− (−0) where

−0 =

"
 × 000 000

000  × 000

#
 (B.44)

−0 =

⎡⎢⎢⎢⎢⎣
0× 0× 0× 0×
0×  × 000 0× 0

00


0× 0× 0× 0×
0× 0

00
 0×  × 00

0


⎤⎥⎥⎥⎥⎦  (B.45)
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 =  − ,  =  − , 
0
 = (01  

0

)0, 0 = (0+1

  0)
0, 0 = (01   

0

) and

0 = (
0
+1

  0 ). In the following we shall calculate all eigenvalues of −
− 1
2

 0
− 1
2

 .

First, let  = (
P

=1(
0
 )
2)−

1
2 0 and  = (

P
=1(

0
 )
2)−

1
20 denote the normalized factors and

loadings, and let  = (1   


)0,  = (+1

   )
0,  = (0  

0
)

0,  = (1   


),

 = (+1  

 ) and  = (0  0 )0. According to the definition of  at the beginning of

Appendix B, we have 011 = (00−00)0 when  = 1. Similarly, let 
11 = (0−0)0. It is not

difficult to verify that 
11 is orthogonal to both −

− 1
2

 0
−1
2

 and −−
1
2

 0
−1
2

 , and the

( )th element of −0 is −  . It follows that

−−
1
2

 0
−1
2

 −
Ã





!Ã




!0
=

"
 0

0 

#
−
Ã





!Ã




!0

=

"
 − 0 0×
0×  − 0

#
=

" P−1
=1 

0
 0×

0×
P−1

=1 
0


#
 (B.46)

where {   ∈ [−1]} and  together constitute an orthonormal basis for the  dimensional vector

space, and {   ∈ [ − 1]} and  together constitutes an orthonormal basis for the  dimensional

vector space. How to choose  and  will be discussed later.

Step (1.2). Similarly, we also have

−−
1
2

 0
− 1
2

 =

⎡⎢⎢⎢⎢⎣
0 0 0 0

0  × 0 0 
0


0 0 0 0

0 
0
 0  × 0




⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 2

⎤⎥⎥⎥⎥⎦+3 (B.47)
where the dimension of the zero matrices are self-evident and

1 =  × 0 − kk2

kk

0
kk



2 =  × 0

 − kk2


kk

0
kk



3 = 311
0
311, 311 ≡ (01×  kk


kk

 01×  kk
0
kk

)0 (B.48)

Similar to equation (B.46), let {   ∈ [− 1]} and 
kk constitute an orthonormal basis for the

 dimensional vector space, and {   ∈ [− 1]} and 
kk constitute an orthonormal basis for

the  dimensional vector space. Then we have

1 = 0

X−1
=1


0
  (B.49)

2 = 0



X−1
=1


0
  (B.50)
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Step (1.3). Choose  such that {   ∈ [ − 1]} and 
k k constitute an orthonormal basis

for the  dimensional vector space. Then the following set of vectors are orthonormal,Ã


0×1

!
∈[−1]



Ã
0×1
0

!
0∈[−1]



Ã kk
k k 




− k k
kk




!


Ã




!
 (B.51)

The first three sets contain  − 1 vectors in total, and we choose them as  for  ∈ [ − 1].
Similarly, choose  such that {   ∈ [ − 1]} and 

k k constitute an orthonormal basis for the

 dimensional vector space. Then the following set of vectors are orthonormal,Ã


0×1

!
∈[−1]



Ã
0×1
0

!
0∈[−1]



Ã kk
k k 




− k kkk



!


Ã




!
 (B.52)

The first three sets contain  − 1 vectors in total, and we choose them as  for  ∈ [ − 1].
Let A ≡ −−

1
2

 0
− 1
2

 − (−
− 1
2

 0 
−1
2

 −3). From expressions (B.46)-(B.52) we can
see that the  +  eigenvectors of A are given by⎛⎜⎜⎜⎜⎝



0×1
0×1
0×1

⎞⎟⎟⎟⎟⎠
∈[−1]

⎛⎜⎜⎜⎜⎝
0×1
0

0×1
0×1

⎞⎟⎟⎟⎟⎠
0∈[−1]

⎛⎜⎜⎜⎜⎝
kk
k k 




−k k
kk 




0×1
0×1

⎞⎟⎟⎟⎟⎠
Ã





!

√
2

⎛⎜⎜⎜⎜⎝
0×1
0×1


0×1

⎞⎟⎟⎟⎟⎠
∈[−1]

⎛⎜⎜⎜⎜⎝
0×1
0×1
0×1
0

⎞⎟⎟⎟⎟⎠
0∈[−1]

⎛⎜⎜⎜⎜⎝
0×1
0×1
kk
k k 




−k k
kk 




⎞⎟⎟⎟⎟⎠
Ã



−

!

√
2

, (B.53)

and the corresponding eigenvalues are

1 for all 
(−1 times)

1− 0 for all 0
(−1 times)

 1 2

1 for all 
(−1 times)

1− 0

 for all 0

(−1 times)
1 0

 (B.54)

Step (1.4). Now consider 3. From equation (B.48), it is not difficult to verify that

311 = kk kk

⎡⎢⎢⎢⎢⎣− k

k

kk

⎛⎜⎜⎜⎜⎝
kk
k k 




− k k
kk




0×1
0×1

⎞⎟⎟⎟⎟⎠− k

 k

kk

⎛⎜⎜⎜⎜⎝
0×1
0×1
kk
k k 




− k kkk



⎞⎟⎟⎟⎟⎠+√2
Ã

√
2

√
2

!⎤⎥⎥⎥⎥⎦ 

The eigenvalues of A corresponding to the three vectors in the square brackets are 1 1 and 2 respec-
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tively. After subtracting 311
0
311, only these three eigenvalues are affected, and they become the

eigenvalues of ⎡⎢⎣
⎛⎜⎝ 1 0 0

0 1 0

0 0 2

⎞⎟⎠− 0

⎤⎥⎦  (B.55)

where  ≡ kk kk

⎛⎜⎜⎝
− k k
kk
− k kkk√
2

⎞⎟⎟⎠ =

⎛⎜⎝ − k

k kk

− k k kk√
2 kk kk

⎞⎟⎠  Obviously, the 3 × 1 vector that is

orthogonal to both (0 0 1)0 and  is an eigenvector of (B.55), and the corresponding eigenvalue is

1. The remaining two eigenvectors of (B.55) should lie in the space orthogonal to this eigenvector,

thus could be written as linear combinations of (0 0 1)0 and , or (for simplicity) linear combinations

of (0 0 1)0 and (− kk kk − k k kk  0)0. Suppose  is an eigenvector of (B.55) and  =

(− kk kk  − k k kk  0)0 +(0 0 1)0. Pre-multiplying  by (B.55), we have

− [(kk2 kk2 + k k2 kk2) + 
√
2 kk kk] = 

2 −
√
2 kk kk [(kk2 kk2 + k k2 kk2) + 

√
2 kk kk] = 

where  represents the eigenvalue of . The solution of these two equations are

1 ≡ k k2 + kk2 + 1
2

+

vuutÃk k2 + kk2 + 1
2

!2
− 2 k k2 kk2

2 ≡ k k2 + kk2 + 1
2

−

vuutÃk k2 + kk2 + 1
2

!2
− 2 k k2 kk2

Thus the three eigenvalues of (B.55) are (1 1 2). In sum, the eigenvalues of −−
1
2

 0
− 1
2

 are:

1 for all 
(−1 times)

1− 0 for all 0
(−1 times)

 c2 c1

1 for all 
(−1 times)

1− 0

 for all 0

(−1 times)
1 0

 (B.56)

Due to subtracting 311
0
311, the eigenvectors of the three bold blocks in expression (B.56) are

orthogonal rotations of the eigenvectors of the three bold blocks in expression (B.54). All of the

nonzero eigenvalues are positive and bounded away from zero w.p.a.1.

Lemma B.3 Suppose that the conditions in Theorem 4.1 hold. Then as ( ) → ∞, both 1√



and 1√

 are (

°°°̂− 0
°°°°°°̂ − 0

°°°+q


°°°̂ − 0
°°°2 +q 



°°°̂− 0
°°°2).

Proof. First note that (1) 0 = 0, (2) the -th block of  0 is −(10 + 10) where 1
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denotes the ×1 vector with the -th element being 1 and all the other elements being zeros, (3) the
( )th block of  0 is −10 , and the ( )-th blocks are zeros if  6= , and (4) the ( )th

block of  0 is −, and the ( )th blocks are zeros if  6= . By (B.6)-(B.8), we have

0 [(

P
=1 

2



−
P

=1 
2



)2] = 8−1 (1

0
 + 1

0
)

−1
 +

8




−1
 (+ ⊗ )

0 [
X

=1

X


(
X

=1
)

2] = 0,

0 [
X

=1

X


(
X

=1
)

2] = 2(
X

6= 1 +
X

 6= 1
0
 +

X
6= 1

0
)

where 1 is an + dimensional vector with the -th element in the -th block being one and all

the other elements being zero. Let  and  denote the -th element of  and  , respectively.

It follows that

 = (̂− 0)00()(̂− 0)

= −
X

=1
(̂ − 0 )

0(()10 + ())(̂ − 0 )

−
X

=1
(̂ − 0 )

0()10 (̂ − 0 )

− (̂ − 0)[
1



X

=1
()(̂ − 0)−

1



X

=1
()(̂ − 0)]

− 
2
()[

1



X

=1
(̂ − 0)

2 +
1



X

=1
(̂ − 0)

2]

−


X
6= ()

X

=1
(̂ − 0)(̂ − 0)

−


X
6=(̂ − 0)[

X

=1
()(̂ − 0) +

X

=1
()(̂ − 0)]

≡ 1+ 2+ 1+ 2+ 3+ 4, (B.57)

where () = 0 + (̂ − 0) and () = 0 + (̂− 0). It’s easy to see

|1| ≤ 
°°°̂ − 0

°°° k()k°°°̂ − 0
°°°  (B.58)

|2| ≤  k()k
°°°̂ − 0

°°°2  (B.59)

|1| ≤ 
°°°̂ − 0

°°° ( 1

k()k

°°°̂− 0
°°°+ 1


k()k

°°°̂ − 0
°°°) (B.60)

|2| ≤  k()k ( 1


°°°̂− 0
°°°2 + 1



°°°̂ − 0
°°°2) (B.61)

|3| ≤ 



k()k

°°°̂− 0
°°°2  (B.62)

|4| ≤ 




°°°̂ − 0

°°° k()k°°°̂− 0
°°°  (B.63)
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Since sup
0≤≤1

k()k ≤
°°0 °° + °°°̂ − 0

°°° and sup
0≤≤1

k()k ≤
°°0°° + °°°̂ − 0

°°°, Assumption 1 and
Theorem 4.1 implies that sup

0≤≤1
k()k = (

√
 ) and sup

0≤≤1
k()k = (

√
), it follows that

kk =
°°°̂ − 0

°°°(
√

°°°̂ − 0

°°°+ √


°°°̂− 0
°°°) +(

°°°̂ − 0
°°°2 + 



°°°̂− 0
°°°2) (B.64)

kk = (
√

°°°̂− 0

°°°°°°̂ − 0
°°°+√ °°°̂ − 0

°°°2 + √


°°°̂− 0
°°°2) (B.65)

By symmetric arguments, we also have

kk =
°°°̂ − 0

°°°(
√

°°°̂− 0

°°°+ √


°°°̂ − 0
°°°) +(

°°°̂− 0
°°°2 + 



°°°̂ − 0
°°°2) (B.66)

kk = (
√

°°°̂− 0

°°°°°°̂ − 0
°°°+√ °°°̂− 0

°°°2 + √


°°°̂ − 0
°°°2) (B.67)

This completes the proof of the lemma.

Proof of Theorem 4.2.

Noting that  (
0 0) = 0 we can write  ≡ 

¡
0
¢
= (01   

0


 01   
0

)0, where

 =
P

=1 
0
 and  =

P
=1 

0
 . Then°°°°− 1

2



°°°°2 =X

=1

°°°°°
P

=1 
0
√



°°°°°
2

+
X

=1

°°°°°
P

=1 
0
√



°°°°°
2

= ( +  ) (B.68)

where the second equality holds by Assumption 5 and Markov and Jensen inequalities. It follows

that Ã
1√

(̂− 0)

1√

(̂ − 0)

!
= 

− 1
2

 (̂− 0) = −−
1
2


−1
0 −

−1
2


−1
0

= (−−
1
2

0
− 1
2

)
−1

− 1
2

√


+ (−−
1
2

0
−1
2

 )
−1

−1
2

√


= (
1


) +(

1



°°°̂ − 0
°°°2 + 1



°°°̂− 0
°°°2) (B.69)

where the last equality holds by (B.68) and Lemmas B.1, B.2 and B.3. By Theorem 4.1, ||̂ −
0|| = (

q



) and ||̂ − 0|| = (
q




). Plugging this back into equation (B.69) yields that

1√

||̂− 0|| = (

1


) and 1√

||̂ − 0|| = (

1


). ¥

C Proof of Theorem 4.3

To prove Theorem 4.3, we need Lemmas C.1—C.3 below.

23



Lemma C.1 Suppose that the conditions in Theorem 4.2 hold. Then as ( )→∞,
(i) kk =

°°°̂ − 0

°°°(



) +(


2


) and kk = (

√


2


);

(ii) kk =
°°°̂ − 0

°°°(



) +(

2


) and kk = (

√


2


).

Proof. By Theorem 4.2, we have ||̂ − 0|| = (
√



) and ||̂ − 0|| = (

√



). Plugging these

back into (B.64)-(B.67), we prove the above lemma.

Lemma C.2 Suppose that Assumptions 1, 2 and 4(i) hold. Then as ( )→∞,
(i)
°°[0 ]°° = (1) and

°°0°° = (
√
);

(ii)
°°[−1

0 ]
°° = (

1

) and

°°−1
0
°° = (

1

);

(iii)
°°−1

0
°° = (

1

) and

°°°−1
 0

°°° = (
1

);

(iv)
°°[ 0 ]

°° = (
√
 ) and

°° 0
°° = (

√
 ).

Proof. (i) The results are obvious by noting that
°°0°° ≤ under Assumption 1(ii).

(ii) For the random missing case, since E()    0 for all  and  by Assumption 2(i),

min


min(
1


P
=1 E()

0
 

00
 ) is bounded away from zero in probability by Assumption 1(i). (B.17)

implies
°° 1

(0 − ̄0)

°° = (


1
√

) = (1) when


1
√

→ 0. It follows that

°°°°( 1 0)
−1
°°°° =

∙
min


min(
1



X

=1


0
 

00
 )

¸−1
≤ 1

∙
min


min(
1



X

=1
E()

0
 

00
 )−

°°°° 1 (0 − ̄0)

°°°°¸ = (1)

For the block missing/staggered missing/mixed frequency case, the result follows from Assumptions

1 and 2(ii).

(iii) By equations (B.9)—(B.10), 0 = 0− 

0

00
 . Then by Woodbury matrix identity (see,

e.g., Fact 6.4.31 in Bernstein (2005) or p.309 in Seber (2008)),

−1
0 = −1

0 − −1
0

0
(−




2 + 00 

−1
0

0
)
−100 

−1
0  (C.1)

Since 00 
−1
0

0
 is negative definite, we have°°°°[−


2 + 00 

−1
0

0
 ]
−1
°°°° ≤ 


 (C.2)

Then by (i)-(ii), we have

°°−1
0
°° ≤

°°−1
0
°°+ °°−1

0
°°2 °°0°°2 °°°°(−


2 + 00 

−1
0

0
)
−1
°°°°

= (
1


) +(

1

 2
)()(




) = (

1


)
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The second part can be proved analogously.

(iv) By equations (B.9)—(B.10),  0 =  0 +  0 − 0
00
 . Noting that the ( )th block

of  0 is −0 00 , ||[ 0 ]|| ≤ ||0 ||||0|| = (
√
 ) and || 0 || ≤ ||0||||0|| = (

√
 ) by

Assumption 1. Similarly to  0 , we also have ||[000 ]|| = (
√
 ) and ||000 || = (

√
 ).

Noting that the ( )th block of  0 is , we have ||[ 0 ]|| ≤ (
P

=1 
2


2
)

1
2 = (

√
 ) and°° 0°° ≤ (P

=1

P
=1 

2


2
)

1
2 = (

√
 ) by Assumption 4(i).

Lemma C.3 Suppose that Assumptions 1, 2 and 6 hold. Then as ( )→∞,
(i)
°°00 −1

0
°° = (

q


+ 


) and

°°°00 −1
 0

°°° = (

q


+ 


);

(ii)
°°0

−1
0

°° = (
√
 + √


) and

°°° 0
−1
 0

°°° = (
√
 + √


);

(iii)
°°0−1

0
°° = (

√
 + √


) and

°°° 0−1
 0

°°° = (
√
 + √


);

(iv)
°°0

−1
0

°° = (
√
 + √


) and

°°° 0
−1
 0

°°° = (
√
 + √


);

(v)
°°[0

−1
0]

°° = (

q


+ 


) and

°°°[ 0
−1
 0 ]

°°° = (

q


+ 


)

Proof. Recall that  = (01   
0

)0 and  = (01   

0

)0 where  =

P
=1 

0
 and

 =
P

=1 
0
  In the following, we shall only prove the first half of parts (i)—(v) as the second

half follows from symmetry.

(i) Note that 00 
−1
0 = 00 

−1
0 − 00 

−1
0

0
(− 


2 + 00 

−1
0

0
)
−100 

−1
0 by (C.1).

We first show °°00 −10°° = (

r



+




) (C.3)

00 
−1
0 is an 2-dimensional vector. From the definition of 0 , we need to show that for any

 and ,
P

=1 
0
1

()0
 (

P
=1 

0
 

00
 )
−1(
P

=1 
0
 ) is (

q


+ 


). This follows because by

Assumptions 5, 6(i) and 6(iii),°°°°X

=1

X

=1
(
X

=1


0
 

00
 )
−10 

00
 

°°°°


≤
°°°° 1 X

=1

X

=1
−1 

0
 

00
 

°°°°


+

°°°°X

=1
(̄−1 −−1 )

1



X

=1
0 

00
 

°°°°


≤ (

r



) +

½X

=1

°°̄−1 −−1
°°2¾12(X

=1

°°°° 1 X

=1
0 

00


°°°°2


)12

= (

r



) +(

r



)(

r



) = (

r



+




) (C.4)

where
P

=1

°°̄−1 −−1
°°2 ≤P

=1

°° − ̄

°°2 sup °°−1 °°2 sup °°̄−1 °°2 = (


) Then

°°00 −1
0

°° ≤
°°00 −10°°+ °°0°°2 °°−10°°°°°°( 2 − 00 

−1
0

0
)
−1
°°°°°°00 −10°°
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= (

r



) +()(

1


)(




)(

r



+




) = (

r



+




)

where the first equality holds by (C.3), (C.2), and Lemma C.2(i)—(ii).

(ii) Note that 0
−1
0 = 0

−1
0−0

−1
0

0
(− 


2+

00
 

−1
0

0
)
−100 

−1
0 by (C.1).

We first show that
°°0

−1
0

°° = (
√
 + √


). Note that

[0
−1
0] =

X

=1


0
 
00
 (
X

=1


0
 

00
 )
−1(
X

=1


0
 )

= [00
X

=1

X

=1
(
X

=1


0
 

00
 )
−10 

00
 ]

0 =
1


[00

X

=1

X

=1
−1 ]

0

where  = 
0
 

00
  We make the following decomposition.

1



X

=1

X

=1
̄−1  =

1



X

=1

X

=1
{−1  +

¡
̄−1 −−1

¢
} ≡ 1 + 2

Under Assumption 1 that
°°0

−1
0

°°2 ≤ 2
P2

=1

P
=1 kk2 ≡

P2
=1  By Assumption 6(i)

and (iii) and the CS inequality, we have E k1k =
P

=1 E
°°° 1 P

=1

P
=1

−1
 

°°°2 = () and

2 =

X
=1

°°°°X

=1

¡
̄−1 −−1

¢ 1


X

=1


°°°°2
≤

X

=1

°°̄−1 −−1
°°2 X

=1

X

=1

°°°° 1 X

=1


°°°°2 = (
2


) (C.5)

Then
°°0

−1
0

°° = (
√
 + √


). It follows that

°°0
−1
0

°° ≤
°°0

−1
0

°°+ °°0
°°°°−1

0
°°°°0°°°°°°( 2 − 00 

−1
0

0
)
−1
°°°°°°00 −10°°

= (
√
 +

√

) +(

√
 )(

1


)(
√
)(




)(

r



+

√

)

= (
√
 +

√

)

where the first equality follows from (C.2), (C.3), Lemma C.2(i)-(ii), and the fact that
°°0

°° =
(
√
 ). In addition, it is easy to see that [0

−1
0] = (

q


+ 


)

(iii) Note that 0
−1
0 = 0

−1
0−0−100(− 


2+

00
 

−1
0

0
)
−100 

−1
0 by (C.1).

We first show that
°°0−10°° = (

√
 + √


). Note that

−[0−10] =
X

=1

X

=1
(
X

=1


0
 

00
 )
−10

=
1



X

=1

X

=1
̄−1 

0
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=
1



X

=1

X

=1
{−1 [1 − E(1)] +−1 E(1)

+(̄−1 −−1 )[1 − E(1)] + (̄−1 −−1 )E(1)}
≡ 1 + 2 + 3 + 4

where recall that 1 = 
0
  Then

°°0−10°°2 ≤ 4P4
=1

P
=1 kk2 ≡ 4

P4
=1  By

Assumption 6(i)—(ii) and the CS inequality, we have

E k1k =

X
=1

E

°°°° 1 X

=1

X

=1
−1 [1 − E(1)]

°°°°2 = ()

2 =

X
=1

°°°° 1 X

=1

X

=1
−1 E(1)]

°°°°2 = (
2


)

3 ≤
X

=1

°°̄−1 −−1
°°2X

=1

X

=1

°°°° 1 X

=1
[1 − E(1)]

°°°°2 = (
2


)

4 ≤
X

=1

°°̄−1 −−1
°°2X

=1

X

=1

°°°° 1 X

=1
E(1)

°°°°2 = (
2

 2
)

Then
°°0−10°° = (

√
 + √


). Then

0
−1
0 ≤

°°0−10°°+ °°0°°°°−10°°°°0°°°°°°( 2 − 00 
−1
0

0
)
−1
°°°°°°00 −10°°

= (
√
) +(

√
 )(

1


)(
√
)(




)(

r



+




) = (

√
 +




)

by (C.2), (C.3), Lemma C.2(i)—(ii), and the fact that
°°0°° = (

√
 ). In addition, it is easy to

see that [0
−1
0] = (

q


+ 


)

(iv) Noting 0 = 0 + 0 − 0
00
 , we have by the results in parts (i)-(iii) that°°0

−1
0

°° ≤
°°0

−1
0

°°+ °°0−1
0

°°+ 
°°0 °°°°00 −1

0
°°

= (
√
 +

√

) +(

√
 +

√

) +(

√
 )(

r



+




)

= (
√
 +

√

)

(v) This part is implicitly proved in parts (i)—(iv).

Proof for Theorem 4.3. We focus on the analysis of ̂−0 Noting that ̂−0 = −−1
0−−1

0

by (3.1), we have

̂ − 0 = −[−1
0] − [−1

0] (C.6)

where recall that [] denotes the th block of vector  (of size  × 1).
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First, we study [−1
0]. The upper-left block of 

−1
0 is [0 − 0

−1
 00 ]

−1, the upper-

right block is −[0 − 0
−1
 00 ]

−1 0
−1
 0  and

[0 − 0
−1
 00 ]

−1 = −1
0 +−1

0 0 [ 0 −0
−1
0 0 ]

−10
−1
0  (C.7)

It follows that

[−1
0] = [−1

0] + [
−1
0 0( 0 −0

−1
0 0)

−10
−1
0]

−[−1
0 0

−1
 0 ] − [−1

0 0( 0 −0
−1
0 0)

−10
−1
0 0

−1
 0 ]

≡ 1+2−3−4 (C.8)

We study 1  4 in turn.

(R1i) By (C.1) we have [−1
0] = [

−1
0 ] − [−10 ][0](− 


2 +00 

−1
0

0
)
−100 

−1
0

By Lemmas C.1(i) and C.2(ii),

°°[−1
0 ]

°° = (
1


)
°°°̂ − 0

°°°+(
1

2

)

By (C.2), Lemma C.1(i) and Lemma C.2(i)-(ii),°°°°[−10 ][0 ](−


2 + 00 

−1
0

0
)
−100 

−1
0

°°°°
= (

1


)(1)(




)(
√
)(

1


)(


√


2

) = (
1

2

)

It follows that 1 = (
1


)
°°°̂ − 0

°°°+(
1

2


)

(R2i) By (C.1) we have

2 = [−1
0 ][ 0 ]( 0 −0

−1
0 0)

−10
−1
0

−[−1
0 ][

0
 ][−




2 + 00 

−1
0

0
 ]
−100 

−1
0 0( 0 −0

−1
0 0)

−10
−1
0

≡ 21−22

Note that ( 0 −0
−1
0 0)

−1 equals the lower-right block of 
− 1
2

(
− 1
2

0
− 1
2

)
−1

− 1
2

 . By

Lemmas B.1 and B.2, °°( 0 −0
−1
0 0)

−1°° = (
1


) (C.9)

This together with (C.2), Lemma C.2 and Lemma C.1(i) implies that

21 = (
1


)(
√
 )(

1


)(
√
 )(

1


)(


√


2

) = (
1

2

)
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22 = (
1


)(1)(




)(
√
)(

1


)(
√
 )(

1


)(
√
 )(

1


)(


√


2

)

= (
1

2

)

It follows that 2 = (
1

2


)

(R3i) The analysis is similar to that of 1 and the main difference is that  is replaced by

 0
−1
 0 . Part (R1i) uses kk =

°°°̂ − 0

°°°(



)+(


2


) and kk = (

√


2


). Here by

Lemma C.2(iii)-(iv) and Lemma C.1(ii), we have

°°°[ 0
−1
 0 ]

°°° ≤
°°[ 0 ]

°°°°°−1
 0

°°° kk = (
√
 )(

1


)(


√


2

) = (


2

)°°° 0
−1
 0

°°° ≤
°° 0

°°°°°−1
 0

°°° kk = (
√
 )(

1


)(


√


2

) = (

√


2

)

Thus 3 = [−1
0 0

−1
 0 ] = (

1
2


).

(R4i) The analysis is similar to that of 2, and the main difference is that  is replaced by

 0
−1
 0 . Part (R2i) uses kk = (


√


2


), and here we use
°°° 0

−1
 0

°°° = (

√


2


). Then

4 is also (
1

2


).

Combining the above results for 1  4 we have

[−1
0] = (

1


)
°°°̂ − 0

°°°+(
1

2

) (C.10)

Now, we study [−1
0]. As in (C.8), we have

[−1
0] = [−1

0] + [
−1
0 0( 0 −0

−1
0 0)

−10
−1
0]

−[−1
0 0

−1
 0 ] − [−1

0 0( 0 −0
−1
0 0)

−10
−1
0 0

−1
 0 ]

≡ 1+ 2− 3− 4 (C.11)

We study 1  4 in turn.

(S1i) By (C.1) we have

[−1
0] = [

−1
0 ] − [−10 ][0 ][−




2 + 00 

−1
0

0
]
−100 

−1
0 (C.12)

By (C.2), (C.3) and Lemma C.2(i)-(ii),°°°°[−10 ][0][−


2 + 00 

−1
0

0
 ]
−100 

−1
0

°°°°
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= (
1


)(1)(




)(

r



+




) = (

1√


+
1


)

It follows that 1 = [−1
0 ] +(

1√


+ 1

)

(S2i) By (C.1) we have

2 = [−1
0 ][ 0 ]( 0 −0

−1
0 0)

−10
−1
0

−[−1
0 ][

0
 ][−




2 + 00 

−1
0

0
 ]
−100 

−1
0 0( 0 −0

−1
0 0)

−10
−1
0

≡ 21− 22 (C.13)

By (C.9), (C.2), Lemma C.2, and Lemma C.3(iv),

21 = (
1


)(
√
 )(

1


)(
√
 +

√

) = (

1√


+
1


)

22 = (
1


)(1)(




)(
√
)(

1


)(
√
 )(

1


)(
√
 +

√

)

= (
1√


+
1


)

Then 2 = (
1√


+ 1

)

(S3i) As in part (S1i), we have

[−1
0 0

−1
 0 ]

= [−1
0 ][ 0

−1
 0 ] − [−10 ][0 ][−




2 + 00 

−1
0

0
 ]
−100 

−1
0 0

−1
 0  (C.14)

The difference is that  is replaced by  0
−1
 0 and  is replaced by [ 0

−1
 0 ]. Part (S1i)

uses
°°00 −10°° = (

q


+ 


) whereas here by Lemmas C.2(i)-(ii) and C.3(iv), we have°°°00 −10 0

−1
 0

°°° ≤
°°0°°°°−10°°°°° 0

−1
 0

°°°
= (

√
)(

1


)(
√
 +

√

) = (

r



+ 1)

In addition, by Lemma C.2(ii) and Lemma C.3(v),

[−1
0 ][ 0

−1
 0 ] = (

1


)(

r



+




) = (

1√


+
1


)

Then by the above results, (C.2), and Lemma C.2(i)—(ii),

k3k ≤
°°°[−1

0 ][ 0
−1
 0 ]

°°°+ °°[−1
0 ]

°°°°[0 ]°°°°°°[−


2 + 00 

−1
0

0
 ]
−1
°°°°°°°00 −10 0

−1
 0

°°°
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= (
1√


+
1


) +(

1


)(1)(




)(

r



+ 1) = (

1√


+
1


)

(S4i) The analysis is similar to that in part (S2i). The main difference is that  is replaced

by  0
−1
 0 . Part (S2i) uses

°°0
−1
0

°° = (
√
 + √


) Here, by Lemma C.2(iii)-(iv) and

Lemma C.3(iv),°°°0
−1
0 0

−1
 0

°°° ≤
°°0

°°°°−1
0
°°°°° 0

−1
 0

°°°
= (

√
 )(

1


)(
√
 +

√

) = (

√
 +

√
 )

With this change, we can follow the analysis of 2 and showing that 4 = (
1√


+ 1

)

Combining the above results for 1  4 yields

[−1
0] = [

−1
0 ] +(

1√


+
1


+
1


) (C.15)

This, in conjunction with (C.6) and (C.10), implies that

̂ − 0 = −[−10 ] +(
1


)
°°°̂ − 0

°°°+(
1

2

) (C.16)

Since(
1


)
°°°̂ − 0

°°° = (
°°°̂ − 0

°°°) and °°[−1
0 ]

°° = (
1√

), we have

°°°̂ − 0

°°° = (
1√

)+

(
1

2


). Plug this back, we have

̂ − 0 = −[−10 ] +(
1√



) +(
1

2

) = −[−1
0 ] +(

1

2

)

By Assumption 6(iv), we have − [−1
0 ]

→ Σ−1 and 1√



→ N (0Ω ). Thus if 
1
2

2


→ 0, we have

√
 (̂ − 0 ) = [

1



X

=1


0
 

00
 ]
−1 1√



X

=1


0
  +(

√


2

)
→ N (0Σ−1 ΩΣ−1 )

The limit distributions of the estimated factors follow from symmetric arguments. In particular,

we have ̂− 0 = −[−1 0 ] +(
1

2


) and
√
(̂− 0 ) = [

1


P
=1 

0

00
 ]
−1 1√



P
=1 

0
 +

(
√


2


)
→ N (0Σ−1ΛΩΛΣ−1Λ ) ¥

D Proof of Theorem 5.1

We shall only prove (Λ̂ − Λ0)0 = (

2


) as the other claim follows by symmetric arguments. By

(3.1) we have

(Λ̂− Λ0)0 = −P
=1[

−1
0] −

P
=1[

−1
0]
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It suffices to study
P

=1[
−1
0] and

P
=1[

−1
0].

First, we show
P

=1[
−1
0] = (

√
√

). By (C.11) we have

[−1
0] = [−1

0] + [
−1
0 0( 0 −0

−1
0 0)

−10
−1
0]

−[−1
0 0

−1
 0 ] − [−1

0 0( 0 −0
−1
0 0)

−10
−1
0 0

−1
 0 ]

= 1+ 2− 3− 4 (D.1)

We study
P

=1 1 ·  
P

=1 4 ·  in turn.
(S1i) By (C.12), we have 1 = [−1

0 ] − [−10 ][0 ][− 

2 + 00 

−1
0

0
 ]
−100 

−1
0 =

[−1
0 ] − 12 Then

P
=1[

−1
0 ] =

P
=1

P
=1(

P
=1 

0
 

00
 )
−10  =

1



P
=1

P
=1 ̄

−1
 

0
 

=
1



P
=1

P
=1

−1
  +

1



P
=1

P
=1(̄

−1
 −−1 ) ≡ 11 + 12

By Assumption 7(i), 11 =
√
√


1√


P
=1

P
=1

−1
  = (

√
√

) By Assumptions 6(i) and 5(i)

|12| ≤
nP

=1

°°̄−1 −−1
°°2o12(P

=1

°°°° 1 P
=1 

°°°°2
)12

= 

Ã√
√


!
(

√
√

)

Then
P

=1[
−1
0 ] = (

√
√

+ 


) For 12 we have by (C.2), (C.3), and Lemmas C.2(i)—(ii)

and C.3(i),qP
=1 k12k2 =

°°°°−100 [−


2 + 00 

−1
0

0
 ]
−100 

−1
0

°°°°
≤

°°−1
0
°°°°0°°°°°°[−


2 + 00 

−1
0

0
]
−1
°°°°°°00 −10°°

= (
1


)(
√
)(




)(

r



+




) = (

1√

+

√



)

Then
°°°P

=1 12

°°° ≤ qP
=1 k12k2 kk = (

√
√

+ 


) by the CS inequality. It follows thatP

=1 1 ·  = (
√
√

+ 


)

(S2i) By (C.13) we have

2 = [−1
0 ][ 0 ]( 0 −0

−1
0 0)

−10
−1
0

−[−1
0 ][

0
 ][−




2 + 00 

−1
0

0
 ]
−100 

−1
0 0( 0 −0

−1
0 0)

−10
−1
0

≡ 21+ 22
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By Lemmas C.2 and C.3(iv), (C.2), and (C.9), we haveqP
=1 k21k2 = (

1


)(
√
 )(

1


)(
√
 +

√

) = (

1√

+

√



)qP

=1 k22k2 = (
1


)(
√
)(




)(
√
)(

1


)(
√
 )(

1


)(
√
 +

√

)

= (
1√

+

√



)

It follows that
°°°P

=1 2

°°° ≤ (qP
=1 k21k2 +

qP
=1 k22k2) kk = (

√
√

+ 


)

(S3i) By (C.14) we have

[−1
0 0

−1
 0 ] = [−1

0 ][ 0
−1
 0 ] − [−10 ][0 ][−




2 + 00 

−1
0

0
]
−100 

−1
0 0

−1
 0

≡ 31− 32

Compared to part (S1i), the difference is that  is replaced by  0
−1
 0 and  is replaced by

[ 0
−1
 0 ]. By Lemma C.2(ii) and Lemma C.3(iv),qP

=1 k31k2 =
°°−1

0
°°°°° 0

−1
 0

°°° = (
1


)(
√
 +

√

) = (

1√

+

1√

)

By (C.2), and Lemmas C.2(i)-(ii) and C.3(iv), we haveqP
=1 k32k2 =

°°°°−100 [−


2 + 00 

−1
0

0
]
−100 

−1
0 0

−1
 0

°°°°
≤

°°−1
0
°°2 °°0°°2 °°°°[−


2 + 00 

−1
0

0
 ]
−1
°°°°°°° 0

−1
 0

°°°
= (

1

 2
)()(




)(
√
 +

√

) = (

1√

+

1√

)

It follows that
°°°P

=1 3

°°° ≤ (qP
=1 k31k2 +

qP
=1 k32k2) kk = (

√
√

+ 1).

(S4i) The analysis is similar to case of part (S2i). The difference is that  is replaced by

 0
−1
 0 . Part (S2i) uses

°°0
−1
0

°° = (
√
 + √


). Now, by Lemma C.2(ii) and (iv) and

Lemma C.3(iv),°°°0
−1
0 0

−1
 0

°°° ≤
°°0

°°°°−1
0
°°°°° 0

−1
 0

°°° = (
√
 )(

1


)(
√
 +

√

)

= (
√
 +

√
 )

Then we also have
°°°P

=1 4 · 
°°° = (

√
√

+ 1). In sum, we have

P
=1[

−1
0] = (

√
√

+



+ 1).
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Now, we consider
P

=1[
−1
0]. Note that

°°°P
=1[

−1
0]

°°° ≤
rP

=1

°°°[−1
0]

°°°2 kk ≤ kk√


°°°°(− 1
2

0
−1
2

 )
−1

− 1
2



°°°°
≤ kk√



°°°°°°°°(− 1
2

0
− 1
2

)
−1
°°°°− 1

2



°°°°
= (

√
√

) (1)(

√


2

) = (


2

) (D.2)

by Lemmas B.1, B.2 and B.3. It follows that 1

(Λ̂−Λ0)0 = 1


(

√
√

+ 


+1+ 

2


) = (
1

2


) ¥

E Proof of Proposition 5.1

Proof of Proposition 5.1. We focus on the asymptotic distribution of ̂ · −  · as the asymptotic

distribution of ̂ · −  · follows by analogous arguments.

Noting that ̂  −   = −0(̂ − 0)− (̂ 0̂ − 00 
0
 ) + , we have

̂ · −  · = − 1

0

X

=1


0
(̂ − 0)− 1

0

X

=1
(̂ − 0 )

0̂

− 1

0

X

=1


00
 (̂ − 0 ) +

1

0

X

=1


≡ −∆1 −∆2 −∆3 +∆4 (E.1)

Noting that 1
0 ||

P
=1 

0
|| ≤ 1

0

q
(
P

=1 
2
 )(
P

=1 kk2) =
q

1
0
P

=1 kk2 =  (1)  |∆1| ≤
 (1) ||̂−0|| = (

1
2


) by Assumption 8(i)—(ii). By Theorem 5.1(i) and Assumption 8(i), |∆2| =
1
0(


2


) = (
1

2


). It is easy to check that given the fast convergence rate of ̂ the estimators

̂ and ̂ in Step 2 of Algorithm 5.1 share the same asymptotic properties as stated in Theorem 4.3.

By the proof of Theorem 4.3, we now have

√
(̂ − 0 ) = [

1



X
=1


0

00
 ]
−1 1

12

X

=1


0
  +(

√


2

)
→ N (0Σ−1ΛΩΛΣ−1Λ )

By Assumption 7 with  replaced by ,
1√
0

P
=1 

→ N (0Ω) Let Λ =
1
0
P

=1 
0
 

Then by the Cramér-Wold device and Slutsky theorem, we have

√
(̂ · −  ·) =  0Λ[

1



X
=1


0

00
 ]
−1 1

12

X

=1


0
  +

r


0
1√
0

X

=1
 +  (1)

→ N (0 plim→∞
2
 )

where 2 
=  0ΛΣ

−1
ΛΩΛΣ

−1
ΛΛ +


0Ω + 2

0
ΛΣ

−1
Λ

1
0
P

=1 E(
0
 ). ¥
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