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Abstract

We study the information design and pricing decision of a multi-product
monopolist who faces a buyer with unit demand. Under omniscient disclosure,
we show that one profit-maximizing menu reveals the identity of the highest
quality product and allocates that product, provided a type-specific quality
threshold is met. This menu remains optimal under private disclosure if the
buyer’s value has constant differences in quality and type, or if the value has
non-decreasing differences in quality and type and the threshold type is inde-
pendent of quality. We also characterize the conditions under which an ex-ante
and non-discriminatory posted price mechanism is optimal.
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1 Introduction

In many practical applications, the seller and the buyers know the quality distribu-
tions of the products but are equally unsure of the exact level of quality. Under these
circumstances, the seller may strategically conduct experiments to reveal the quality
of the products. This consideration is especially relevant if the seller is a monopolist
with multiple differentiated products, and each buyer demands at most one product.
The joint decision of information design and pricing determines the seller’s ability to
screen the buyers and reap profits.

As a concrete example, consider the decision of Roche, a Swiss multinational
holding healthcare corporation. The pharmaceutical division of the company sells
two antiviral medicines, Tamiflu and Xofluza, for treatment of seasonal influenza.1

Since both oral treatments have been approved by the Food and Drug Administration
(FDA), the healthcare company and the potential buyers are approximately equally
informed of the effectiveness of the two types of drugs against influenza A and B.
Nevertheless, they do not know the exact level of quality, which determines their
respective valuation for each type of drug. Each potential buyer demands at most
one type of drug2 and Roche may conduct or fund Phase IV clinical trials to further
reveal the quality of each type of drug. Our goal is to analyze the profit-maximizing
menu of experiments and mechanisms for a seller in a similar situation as the Swiss
healthcare company.

As an illustration, consider a monopolist who offers two products, 1 and 2, to a
single buyer who demands at most one product.3 Both the seller and the buyer’s
values can depend on the product quality. For a product of quality q, the seller’s
value is c(q) and the buyer’s value is v(q, θ), where θ is the buyer’s private type and
is independent of q1 or q2. The buyer knows their type, but the seller only knows

1See https://www.cdc.gov/flu/treatment/whatyoushould.htm for more details on the two types
of drugs as well as the FDA approval.

2Existing studies show that combining Xofluza with Tamiflu does not result in superior clinical
outcomes for hospitalized patients with influenza (e.g., Kumar et al., 2022).

3An alternative interpretation is that there are copies of the two products to be sold to a unit
measure of buyers. The quality realization of different copies of products are independent, and so
are the type realization across buyers.
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θ ∼ U [0, 1]. It is common knowledge that product 1 is of deterministic quality, with
q1 = 1, and product 2 is of uncertain quality, with q2 ∼ U [0, 2]. Both the seller and
the buyer are expected utility maximizers with quasilinear preferences. In order to
maximize their expected profit, the seller can devise a menu of verifiable experiments
and selling mechanisms through which to sell the two products. The buyer first
chooses a preferred combination of experiment and mechanism and then makes their
purchasing decision after observing the outcome of the chosen experiment, which is
either publicly or privately observed.

First consider the case of v(q, θ) = qθ and c(q) = 1
2
q. If the seller chooses no

disclosure, then the buyer/seller’s expected value for the two products are identical.
To earn the maximum profit, the seller excludes any buyer type θ ≤ 3

4
, sells either

product to any type θ > 3
4

and leaves zero rent to the cutoff type θ = 3
4
. This

can be achieved by posting prices p1 = p2 = 3
4
, which yields an expected profit of

EPno = 1
16

. Suppose instead the seller conducts a verifiable experiment to reveal
whether q2 ≥ q1 = 1 and posts prices p1 = 3

4
and p2 = 9

8
. Given this menu of

experiment and mechanism, the buyer never purchases any product if θ ≤ 3
4
, purchases

product 1 if θ > 3
4

and q2 < 1, and purchases product 2 if θ > 3
4

and q2 ≥ 1. The
seller’s expected profit from this menu is EP∗ = 5

64
> 1

16
= EPno. It can be shown

that this menu maximizes the seller’s expected profit, irrespective as to whether the
experimental outcome is publicly observed or privately observed by the buyer.

With the above value specification, we see it is optimal for the seller to post a
non-discriminatory price for each product before conducting any experiment. The
following specification suggests this is not always the case. Consider the setting of
v(q, θ) = q + θ and c(q) = 1

2
q. An analogous argument shows the seller can improve

upon the no disclosure benchmark by conducting a verifiable experiment to reveal
whether q2 ≥ q1 = 1 and posting prices p1 = 5

4
and p2 =

13
8

, which yields an expected
profit of EPdisclose = 85

128
. Suppose instead the seller offers a menu of experiments and

corresponding posted prices ({E(η)}η∈[0, 1
4
], {p1(η), p2(η)}η∈[0, 1

4
]), where E(η) reveals

whether q2 ≥ 2− 4η and p1(η) =
5
4
, p2(η) = 2− 3

2
η. Given this menu of experiments

and mechanisms, the buyer’s optimal choice of experiment and purchasing decision
depends on their type. If θ > 1

4
, the buyer chooses experiment E(1

4
) and purchases

3



product 1 if q2 < 1 and purchases product 2 if q2 ≥ 1. If θ < 1
4
, the buyer chooses

experiment E(θ) and only purchases product 2 if q2 ≥ 2 − 4θ. The seller’s expected
profit from this menu is EP∗ = 2

3
> 85

128
= EPdisclose. It can be shown that this menu

maximizes the seller’s expected profit, irrespective as to whether the experimental
outcome is publicly observed or privately observed by the buyer.

There are three observations from this numerical example with two different value
specifications. First, in both cases, the seller can improve their expected profit
through strategic information disclosure. Intuitively, by conducting an experiment
to reveal which product is of higher quality realization, the seller can induce a more
efficient allocation and thus create more surplus to extract from. Second, it is some-
times but not always optimal for the seller to post a non-discriminatory price for
each product before conducting any experiment. Intuitively, for v(q, θ) = qθ and
c(q) = 1

2
q, the seller wants to sell the higher quality product to the buyer if θ > 3

4
,

which is independent of the quality realization. For v(q, θ) = q+ θ and c(q) = 1
2
q, the

seller wants to sell the higher quality to the buyer if θ > 1
2
− 1

4
q, which depends on

the quality realization. Consequently, price discrimination is of no additional value in
the first case, but can be combined with information design to facilitate surplus ex-
traction from the buyer in the second case. Third, in both cases, a profit-maximizing
menu reveals the identity of the higher quality product and allocates that product to
the buyer, provided a type-specific quality threshold is met. Moreover, this menu is
optimal regardless of signal observability to the seller.

The rest of the paper serves to extend and strengthen the three observations in
a general setting. We consider a monopolist seller with multiple products of distinct
quality for sale to a single buyer with ex-ante unit demand. Both the seller and the
buyer know the joint quality distribution but neither knows the exact realization. For
a product of quality q, the seller’s reservation value is c(q) and the buyer’s value is
v(q, θ), where θ is the buyer’s type. We suppose that both the seller and the buyer
share the common prior of θ, which is independent of the joint quality distribution,
but that only the buyer observes its realization. The seller’s goal is to devise a menu
of experiments and mechanisms that maximizes their expected profit. We make a few
assumptions about the buyer’s value function v(q, θ) and the virtual value function
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φ(q, θ) := v(q, θ) − c(q) − 1−F (θ)
f(θ)

vθ(q, θ). Specifically, we suppose v(., .) is strictly
increasing in both q and θ. In addition, we suppose φ(., .) is strictly increasing in θ,
and is strictly increasing in q above the threshold quality.4 Roughly speaking, these
assumptions guarantee that the products are vertically differentiated. Regarding
signal observability, we allow for both omniscient and private disclosures and analyze
the two cases separately.5

For the case of omniscient disclosure, we characterize one profit-maximizing menu
of experiments and mechanisms. Specifically, we show that the seller can achieve the
optimal profit, subject to the buyer’s incentive constraints, by offering a type-specific
experiment that reveals the identity of the highest quality product and allocating that
product to the buyer, provided the highest quality product meets the type-specific
threshold quality. We further show that the set of experiments in this menu is the
Blackwell least informative experiment for every buyer type among the collection of
experiments that can achieve the optimal profit. The importance of the latter char-
acterization is two-fold: first, if the seller could not design arbitrarily informative
experiments, then what we characterize is the set of minimally informative experi-
ments that still enables the seller to achieve the optimal profit; second, we show if
the seller could achieve the same profit under private disclosure as under omniscient
disclosure, then they could do so by conducting the set of Blackwell least informa-
tive experiments. In other words, the set of experiments that we characterize is the
one most robust to signal informativeness and observability that enables the seller to
achieve the optimal profit.

For the case of private disclosure, we impose an additional assumption that the
quality realizations of different products are mutually independent. Under this ad-
ditional assumption, we show that the seller can achieve the same profit as in the
case of omniscient disclosure if either (1) the buyer’s value has constant differences
in product quality and buyer type or (2) the buyer’s value has non-decreasing dif-
ferences in product quality and buyer type and the threshold type is independent of

4The threshold quality represents the minimum quality at which the seller is willing to relinquish
a product to the buyer (see Equation 1 for details).

5In an omniscient disclosure, both the seller and the buyer observe the outcome of the experiments
(Bergemann and Morris, 2016). In a private disclosure, only the buyer observes the experimental
outcome (Li and Shi, 2017; Kolotilin et al., 2017).
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product quality.6

Then we explore the conditions under which price discrimination is not beneficial
to the seller. We show it is profit-maximizing to post a non-discriminatory price for
each product ex ante if either (a) the threshold type is independent of product qual-
ity or (b) the buyer’s value is identical for every quality-threshold type pair. With a
single product, the two conditions are also necessary. With multiple products, there
are other value/virtual functions such that an ex-ante and non-discriminatory posted
price mechanism is optimal for some quality distributions, but the two cases are the
only possibilities where an ex-ante and non-discriminatory posted price mechanism
is optimal for all/all independent quality distributions under omniscient/private dis-
closure. Finally, we analyze the conditions under which information design is not
beneficial in the single-product scenario. For both the cases of omniscient and pri-
vate disclosures, we show the seller cannot improve upon the no disclosure benchmark
if the threshold type is independent of product quality. For the case of omniscient
disclosure, we additionally show this condition is necessary, that is, the seller can
strictly improve upon the no disclosure benchmark when this condition fails.

Taken together, our analysis sheds light on the role of information design and
price discrimination for a multi-product monopolist.

Related Literature Our paper is at the intersection of two strands of literature:
optimal information disclosure (Rayo and Segal, 2010; Kamenica and Gentzkow, 2011;
Kolotilin et al., 2017) and optimal pricing and mechanism design (Mussa and Rosen,
1978; Myerson, 1981).

There is a growing literature that combines optimal pricing with information
design, but almost all existing and concurrent works focus on a single product. One
set of papers study the optimal nondiscriminatory disclosure policy and corresponding
pricing scheme at which to sell one product to one or more buyers, such as Lewis
and Sappington (1994), Ottaviani and Prat (2001), Johnson and Myatt (2006) and
Bergemann and Pesendorfer (2007). The key insight of these papers is that whether

6The threshold type represents the minimum buyer type to which the seller is willing to relinquish
a product of given quality (see Equation 2 for details).
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the buyer has private information, if the seller is constrained to use a single non-
discriminatory disclosure policy, then either full or no disclosure is optimal.7 Some
other works study a similar problem, such as Eső and Szentes (2007), Li and Shi
(2017), Chen (2019) and Guo, Li and Shi (2022), but allow for private disclosure.
Their key message is that if the seller is constrained to use orthogonal disclosure
policies, that is, the information the seller discloses is independent of the buyer’s
private information, then full disclosure is optimal with continuous buyer types, while
partial disclosure may be optimal otherwise. Our paper also studies a similar problem
under discriminatory disclosure but differs from these two sets of works in two key
aspects. First and foremost, we suppose the seller offers multiple products, each of
distinct quality. The key difference from the single-product scenario is that even if the
seller posts a price for each product, a unit-demand buyer’s action space is no longer
binary, that is, the buyer can choose between purchasing any one of the products or
not purchasing a product, instead of just whether to purchase or not to purchase.
As Kolotilin et al. (2017) point out, the number of actions significantly affects the
complexity of the buyer’s incentive constraints, especially under private disclosure.
In addition, we suppose the seller can conduct experiments only with respect to the
product quality, which is assumed to be independent of the buyer’s private type.
In other words, in contrast to most previous works that focus on differences in the
buyer’s taste, our model particularly fits the application of a monopolist seller with
multiple vertically differentiated products.8

Two closely related papers are the concurrent works by Smolin (2023) and Wei
and Green (2023). Similar to our setting, they also study the optimal discriminatory
disclosure policy with respect to the product’s attributes and corresponding pricing
menu of a monopolist seller. Specifically, Smolin (2023) considers a single product
with multiple attributes and analyzes the structure of the optimal menu of disclo-
sure policy and pricing rule under private disclosure, whereas Wei and Green (2023)

7One implicit assumption is that the seller commits to a deterministic disclosure rule. Krähmer
(2020) shows this result may not hold if the seller is allowed to randomize over information structures.

8In a concurrent work, Bergemann, Heumann and Morris (2023) also consider the situation where
a monopolist can offer various products of distinct quality to screen the buyer, but they assume the
seller has full control over the quality of these products and conducts experiments with respect to
the buyer’s private type.
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focus on a single product with a single attribute and put restrictions on the buyer’s
valuation, so that the optimal pricing menu exhibits reverse price discrimination. By
comparison, we analyze the case of multiple products, each with a single attribute.
As explained in the previous paragraph, the multi-product setting is sharply different
from the single-product scenario because the incentive constraints are significantly
more complicated, especially under private disclosure. Under this framework, we
characterize the seller’s profit-maximizing menu of experiments and selling mecha-
nisms under both omniscient and private disclosures. Moreover, our analysis shows
that whether the threshold type depends on the product quality would affect the
seller’s ability to screen the buyer and helps explain the seemingly diverse results
of Smolin (2023) and Wei and Green (2023) in the single-product, single-attribute
scenario (Proposition 4).

In terms of economic insight, our analysis is also related to the literature on opti-
mal bundling (Maskin and Riley, 1984; Yang, 2023). In our setting, for a given quality
profile, the optimal mechanism is always non-screening (Haghpanah and Siegel, 2022).
The key question for the seller is how to bundle the different quality realizations into
experiments so that the buyer’s incentive constraints are respected under omniscient
or private disclosure.

The rest of the paper is organized as follows: Section 2 describes the model setup,
formulates the seller’s profit-maximization problem and introduces the assumptions.
Section 3 presents one optimal menu of experiments and mechanisms under omni-
scient disclosure, and shows this menu remains optimal under private disclosure if
the buyer’s value has constant differences in product quality and buyer type. Sec-
tion 4 analyzes the conditions under which an ex-ante and non-discriminatory posted
mechanism is optimal and Section 5 concludes. All of the proofs are relegated to the
appendix.

2 Model

This section presents the model setup. Section 2.1 introduces the model preliminaries.
Section 2.2 first specifies the incentive constraints on the buyer and then formulates
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the seller’s problem. Section 2.3 discusses the assumptions.

2.1 Model Setup

A monopolist seller has m products of different quality for sale to a single buyer. Given
product quality q, the seller’s reservation value for any product is c(q), whereas the
buyer’s valuation for any product is v(q, θ), where θ is the buyer’s private type. Let
q = (q1, q2, . . . , qm) be the quality profile of the m products, where qi is the quality
of product i. Suppose qi ∈ [

¯
qi, q̄i] is a random variable, commonly unknown to both

the seller and the buyer. Further suppose the seller and the buyer share the same
common prior about q, with joint distribution function G and marginal distribution
function Gi. Let Q := ×m

i=1[
¯
qi, q̄i] be the set of possible quality profiles. We assume

G is absolutely continuous and has full support on Q, but allow Gi to be degenerate,
that is, it is possible that

¯
qi = q̄i for some product i.

Let the buyer’s type θ ∈ [
¯
θ, θ̄], which is assumed to be their private information.

Suppose the seller and the buyer share the same common prior about θ, which can
be represented by an absolutely continuous density function f(.) > 0 on [

¯
θ, θ̄], with

corresponding distribution function F . Further suppose the buyer has ex-ante unit
demand (which is formalized in Assumption 3) and both the seller and the buyer
are expected utility maximizers with quasilinear preferences. To be precise, consider
any allocation-payment pair (x, t), where xi ≥ 0 is the probability the buyer receives
product i and t is the expected transfer/payment from the buyer to the seller. For∑m

i=1 xi ≤ 1, the buyer’s expected utility for any realized quality profile q̂ is given by

UB(x, t; θ) =
m∑
i=1

xiv(q̂i, θ)− t

The seller’s expected utility for this realized quality profile is given by

U0(x, t) = t−
m∑
i=1

xic(q̂i)
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Experiment(s) The seller can design a family of experiments {Eγ}γ∈Γ to screen
the buyer and disclose information of the realized quality profile. One statistical
experiment/information structure E consists of a measurable signal realization space
S and a family of probability mass/density functions {π(.|q)}q∈Q over S. Any one
experiment can be arbitrarily informative of the realized quality profile. For instance,
in the case of no disclosure, S = {s0} is a singleton set and π(s = s0|q) = 1, for any
q ∈ Q. In the case of full disclosure, S = Q and π(s = q|q) = 1, π(s = q′|q) = 0, for
any q ∈ Q and q′ ̸= q.

Selling Mechanism Let X = {x: 0 ≤ xi ≤ 1, 1 ≤ i ≤ m} be the set of possible
allocations. Given an experiment E = (S, π), we consider a general class of tariff
mechanisms

T : X × S → R,

which, given signal realization s, specifies payment T (x, s) the buyer has to make for
each random bundle x ∈ X. If the seller does not offer a bundle x0 ∈ X given signal
realization s, then T (x0, s) = +∞.

Timing The game proceeds as follows:

1. The seller designs a menu consisting of a set of experiments and tariff mecha-
nisms which can be conditioned on the signal realizations or the buyer’s reported
signal realizations, that is, {Eγ, T (Eγ)}γ∈Γ, and commits to this menu.

2. The quality profile q is realized according to G, unobserved to both the seller
and the buyer. The buyer’s type θ is realized according to F , which is privately
observed.

3. The buyer chooses one combination of experiment and tariff mechanism (E, T (E))

from the menu.

4. Given the buyer’s choice of experiment E = (S, π), signal s ∈ S is realized and
is publicly observed by both the seller and the buyer or privately observed by
the buyer.
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5. Given signal realization s, the buyer makes their purchasing decision by choosing
allocation x ∈ X with payment T (x, s) or the outside option of no purchase.

Our goal is to find a menu of experiments and tariff mechanisms that maximizes
the seller’s expected profit.

Remark 1: There are two clarifications regarding the game rule.

(1) With multiple products, the optimal profit the seller can attain when the signal
realization is publicly observed (i.e., omniscient disclosure) can be quite different
from the case where the signal realization is privately observed (i.e., private
disclosure), and we will analyze the two cases separately.

(2) The buyer can leave the market with no purchase anytime during the game.

2.2 Buyer’s Incentive Constraints and Seller’s Problem

We start with the setting of omniscient disclosure. Since the signal realization is pub-
licly observable, the revelation principle still holds in the presence of information de-
sign. Specifically, for any menu of experiments and tariff mechanisms {Eγ, T (Eγ)}γ∈Γ,
there exists a menu of direct experiments {E(θ) = (S(θ), π(θ))}θ∈[

¯
θ,θ̄] and mechanisms

{x(θ, s), t(θ, s)}θ∈[
¯
θ,θ̄],s∈S(θ) (where xi(θ, s) is the probability that a type θ buyer re-

ceives product i given signal realization s and t(θ, s) is the corresponding total pay-
ment of this buyer) that implements the same outcome in a truthful revelation.

Let U(θ′, s; θ) be the expected utility of the buyer who is a true type θ, whereas
they report and act as being type θ′ and the public signal realization is s. Specifically,
for
∑m

i=1 xi(θ, s) ≤ 1, ∀θ, θ′ ∈ [
¯
θ, θ̄] and s ∈ S(θ′), we have

U(θ′, s; θ) =
m∑
i=1

xi(θ
′, s)E[v(qi, θ)|s, E(θ′)]− t(θ′, s)

For notational simplicity, we write U(θ, s) := U(θ, s; θ), which represents the expected
utility of a type θ buyer under truthful reporting and the public signal realization is
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s. Then the buyer’s incentive constraints are defined as follows:∫
s∈S(θ)

U(θ, s)π(θ, s)ds ≥
∫
s∈S(θ′)

max{U(θ′, s; θ), 0}π(θ′, s)ds, ∀θ, θ′ ∈ [
¯
θ, θ̄] (ICom)

U(θ, s) ≥ 0, ∀θ ∈ [
¯
θ, θ̄] and s ∈ S(θ) (IR)

Since the buyer can quit with no purchase anytime during the game, the set of
participation constraints (IR) is imposed ex post and requires that for every signal
realization of the chosen experiment, the buyer is willing to take their consumption-
payment bundle instead of the outside option. For the same reason, when evaluat-
ing a candidate misreport, the buyer takes into account of the possibility that they
may quit with no purchase under some signal realization, which explains the term
max{U(θ′, s; θ), 0} in the set of incentive constraints (ICom).

From Section 2.1, the seller’s expected utility/profit from menu of direct experi-
ments and mechanisms ({E(θ)}, {x(θ, s), t(θ, s)}) is given by

EP = Eθ

[∫
s∈S(θ)

(
t(θ, s)−

m∑
i=1

xi(θ, s)E[c(qi)|s, E(θ)]

)
π(θ, s)ds

]
(EP)

Consequently, the seller’s problem under omniscient disclosure is given by

• Profit maximization under omniscient disclosure: maximizes (EP), sub-
ject to (ICom) and (IR).

Next we consider the case of private disclosure. Since the signal realization is
privately observed by the buyer, sequential screening may yield a strictly better out-
come for the seller and the revelation principle generally does not hold (Courty and
Li, 2000). For simplicity and direct comparison, however, we still restrict attention
to a menu of direct experiments and mechanisms in this setup. In particular, if the
seller could achieve the same outcome as in the setting of omniscient disclosure, then
we know this restriction is without loss.9

9A similar approach is adopted by Wei and Green (2023), where they introduce an auxiliary
benchmark such that the quality is perfectly revealed to both parties after the seller chooses a
mechanism.
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For the case of private disclosure, let U(θ′, s′; θ, s) be the buyer’s expected utility
when they report and act as being type θ′ and the signal realization is s′ ∈ S(θ′),
whereas their true type is θ and the true signal realization is s ∈ S(θ′). Specifically,
for
∑m

i=1 xi(θ, s) ≤ 1, ∀θ, θ′ ∈ [
¯
θ, θ̄] and s, s′ ∈ S(θ′), we have

U(θ′, s′; θ, s) =
m∑
i=1

xi(θ
′, s′)E[v(qi, θ)|s, E(θ′)]− t(θ′, s′)

For notational simplicity, we write U(θ, s) := U(θ, s; θ, s). Then the seller is subject
to the following set of incentive constraints of the buyer: for any θ, θ′ ∈ [

¯
θ, θ̄],∫

s∈S(θ)
U(θ, s)π(θ, s)ds ≥

∫
s∈S(θ′)

sup
s′∈S(θ′)

{U(θ′, s′; θ, s), 0}π(θ′, s)ds (ICpr)

In other words, (ICpr) strengthens (ICom) by ensuring that the buyer always has
incentives to choose the experiment designed for their type, even when they could
jointly misreport their type and the observed signal realization. In particular, for
θ′ = θ, (ICpr) implies that the buyer always has incentives to truthfully report the
signal realization, conditional on their truthful report of the type. That is,

U(θ, s) ≥ U(θ, s′; θ, s), ∀θ ∈ [
¯
θ, θ̄] and s, s′ ∈ S(θ)

The seller’s problem under private disclosure is given by

• Profit maximization under private disclosure: maximizes (EP), subject
to (ICpr) and (IR).

2.3 Assumptions

This subsection introduces five assumptions: the first four will be maintained through-
out the analysis, while the last assumption will be utilized for some results on private
disclosure.

The first two assumptions concern the buyer’s value and virtual value for different
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quality products.

Assumption 1 (Vertical Differentiation). The value function satisfies

(1) v(q, θ) is continuous and strictly increasing in (q, θ).

(2) vθ(q, θ) exists and is continuous in (q, θ).

Roughly speaking, Assumption 1 states that the different products are vertically
differentiated. In other words, whatever their type, the buyer places a higher value
on a higher quality product. Moreover, the buyer’s value is increasing in their type.

Let φ(q, θ) := v(q, θ)−c(q)− 1−F (θ)
f(θ)

vθ(q, θ) be the buyer’s virtual value. We define
the threshold quality of a type θ buyer as

q⋆(θ) =

maxi q̄i if φ(q, θ) ≤ 0 for all q ∈ [mini
¯
qi,maxi q̄i]

inf{q ∈ [mini
¯
qi,maxi q̄i] : φ(q, θ) > 0} otherwise

(1)
A related definition is the threshold type of a quality q product, which is given by

θ⋆(q) =

θ̄ if φ(q, θ) ≤ 0 for all θ ∈ [
¯
θ, θ̄]

inf{θ ∈ [
¯
θ, θ̄] : φ(q, θ) > 0} otherwise

(2)

Intuitively, the threshold quality represents the minimum quality at which the
seller is willing to relinquish a product to a type θ buyer, whereas the threshold
type represents the minimum buyer type to which the seller is willing to relinquish
a product of quality q. In our context, there is a mapping between the threshold
quality and the threshold type, and we will work with the more convenient definition
based on the question of interest.

The next assumption imposes analogous conditions to Assumption 1 on the buyer’s
virtual value.

Assumption 2 (Vertical Differentiation for Virtual Value). The virtual value satisfies

(1) c(q) is continuous in q.
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(2) φ(q, θ) is strictly increasing in θ, and is strictly increasing in q for q ≥ q⋆(θ).

Item (2) of Assumption 2 only imposes monotonicity for product quality above
the threshold quality because, in the optimal menu of experiments and mechanisms,
no product with quality less than q⋆(θ) would be allocated to a type θ buyer.

The third assumption formalizes the idea that the buyer has ex-ante unit demand.

Assumption 3 (Unit Demand). For any of the seller’s choice of experiments and
mechanisms,

∑m
i=1 xi(θ, s) ≤ 1, for any θ, s.

This assumption is necessary but not sufficient for ex-post unit demand, which
states that the buyer will receive either nothing or one unit of one of the products. In
terms of economics, the seller may offer random allocations. For instance, if m = 2,
then an allocation such as (0.5, 0.5) is allowed. On the other hand, we will show in
Section 3 that the optimal menu of experiments and mechanisms features ex-post
unit demand under every signal realization.

The next assumption guarantees that whatever their type, the buyer would share
the same common prior G of the quality profile.

Assumption 4 (Independence of Product Quality Profile and Buyer Type). The
quality profile q = (q1, q2, . . . , qm) and the buyer’s private type θ are independent.

The final assumption requires quality independence of different products and will
only be used in analyzing the profit-maximization problem under private disclosure.

Assumption 5 (Independent Product Quality). The quality of the m products q1, q2, . . . , qm
are mutually independent.

One implication of this assumption is E[h(qi)|qi = maxl ql] ≥ E[h(qi)|qj = maxl ql]

for any non-decreasing function h(.). For instance, we can take h(.) = v(., θ). On the
other hand, this inequality may not hold without mutual independence. 10

10A counter-example is as follows: suppose m = 2 and q1 ∈ [2, 3], q2 ∈ [1, 4]. Further suppose
(q1, q2) has a close to 0.5 probability around (2, 1) and a close to 0.5 probability around (3, 4). Then
for the identity function h(q) = q, we have E[q1|q1 ≥ q2] < E[q1|q2 ≥ q1].
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3 Optimal Menu of Experiments and Mechanisms

This section analyzes one profit-maximizing menu of direct experiments and mecha-
nisms. In Section 3.1, we focus on omniscient disclosure and characterizes one optimal
menu of direct experiments and mechanisms. We further show that the set of exper-
iments is the Blackwell least informative one for every buyer type among any set of
experiments that can achieve profit maximization. In Section 3.2, we consider private
disclosure and show that when the buyer’s value is additively separable/has constant
differences in product quality and buyer type, then the menu of experiments and
mechanisms identified in Section 3.1 remains optimal under this alternative disclo-
sure setup.

3.1 Omniscient Disclosure

Throughout this subsection, we suppose the signal realization is publicly observed
by both the seller and the buyer and analyze the profit-maximization problem under
omniscient disclosure.

Before characterizing the optimal menu of experiments and mechanisms, we first
describe the optimal experiment for each buyer type. For a type θ buyer, we introduce
an imaginary product 0 with quality q0(θ) := q⋆(θ) and let S∗(θ) = {s∗0(θ), s∗1(θ), . . . , s∗m(θ)}
be a signal space with m + 1 signal realizations. Now let Q(θ) := {q0(θ)} × Q be
the collection of possible quality profiles for a type θ buyer.11 Further let Q∗

i (θ) =

{q(θ) ∈ Q(θ) : qi(θ) ≥ max0≤j<i qj(θ), qi(θ) > maxi<j≤m qj(θ)} be the collection of
quality profiles in Q(θ) where product i is of the highest realized quality with the
largest index. For any q ∈ Q∗

i (θ), let π∗(θ, s∗i (θ)|q) = 1. Consider the following
type-specific experiment:

E∗(θ) = (S∗(θ), π∗(θ))

In other words, for a type θ buyer, the experiment reveals the identity of the high-
est quality product, provided the quality of that product is at least q⋆(θ). Otherwise,

11Recall from Section 2 that Q := ×m
i=1[

¯
qi, q̄i] is the collection of possible quality profiles for the

m actual products.

16



the experiment only reveals the fact that each product is of a quality lower than q⋆(θ).

The following theorem states that under omniscient disclosure, the seller can
achieve the optimal profit, subject to the buyer’s incentive constraints, with the set of
discriminatory experiments {E∗(θ)} and a set of discriminatory cutoff mechanisms.

Theorem 1 (Optimal Menu under Omniscient Disclosure). Under Assumptions 1
through 4, the seller can achieve the optimal expected profit, subject to (ICom) and (IR),
with the set of experiments {E∗(θ)} and the following set of direct mechanisms: for
any θ ∈ [

¯
θ, θ̄] and i = 1, 2, . . . ,m,

x∗
i (θ, s) =

{
1 if s = s∗i (θ)

0 otherwise

and

t∗(θ, s) =

{
E[v(qi, θ)|s∗i (θ)]−

Vi(θ)
π∗(θ,s∗i (θ))

if s = s∗i (θ)

0 if s = s∗0(θ)
,

where Vi(θ) :=
∫ θ

¯
θ
E[vη(qi, η)|s∗i (η)]π∗(η, s∗i (η))dη.

Theorem 1 characterizes one solution to the profit-maximization problem under
omniscient disclosure: for each buyer type, an experiment is offered to reveal the
identity of the highest quality product, provided the quality of that product meets
the buyer’s type-specific threshold quality. When the latter condition is met, the
realized highest quality product is allocated to the buyer.

To intuitively understand the optimal combination of disclosure policy and sell-
ing mechanism, we draw connection to the analysis on optimal bundling (Maskin and
Riley, 1984; Yang, 2023). For simplicity, suppose m = 2 and consider a deterministic
quality profile (q1, q2). Since we allow for random allocations, the key question is to
identify the seller’s optimal bundling policy, taking into account of the buyer’s incen-
tive constraints. An important observation is that under Assumption 2, the optimal
selling mechanism always features no bundling and selling the higher quality product
to the buyer, provided their type meets the threshold type of maxi qi. Consequently,
if all realizations of q2 ≥ max{q⋆(θ), q1} are grouped into one signal, then the seller
can still devise a proper payment scheme and induce the profit-maximizing allocation
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in an incentive compatible manner.

To ensure incentive compatibility, the following lemma shows that the threshold
quality is weakly decreasing in buyer type, which leads to an increasing quality profile
where each signal concerning the m actual products is sent.

Lemma 1 (Decreasing Threshold Quality). Under Assumption 2,

q⋆(θ) ≥ q⋆(θ′), for any θ < θ′,

where q⋆(θ) is as defined in Equation (1).

Remark 2: There are three clarifications regarding the characterization in Theo-
rem 1.

(1) This result does not rely on the product quality being mutually independent.
Indeed, the connection with optimal bundling suggests that the seller’s profit
is maximized for every quality profile realization.

(2) Given the set of discriminatory experiments {E∗(θ)}, the optimal allocation
is unique, but the transfer rule is not unique for some valuation structures
and quality distributions. In contrast to the single-product scenario, the en-
velope formula only pins down each buyer type’s expected information rent
across signal realizations. Nevertheless, the prescribed transfer rule ensures the
set of incentive constraints (ICom) and participation constraints (IR) are both
respected across all valuation structures and quality distributions.

(3) The optimal disclosure policy is not unique. For instance, under omniscient dis-
closure, the seller can also achieve the optimal expected profit, subject to (ICom)
and (IR), through full disclosure and conditional posted prices

p∗i (q) =

{
v(qi, θ

⋆(qi)) if qi = maxj qj

+∞ otherwise
,

where θ⋆(q) is the threshold type of quality q as defined in Equation (2).
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With respect to item (3) of Remark 2, the following proposition illustrates the
special role of {E∗(θ)}.

Proposition 1 (E∗(θ) in terms of Blackwell Order). Suppose Assumptions 1 through 4
hold and that the seller can achieve the optimal profit, subject to (ICom) and (IR),
with a set of experiments {Ẽ(θ)} and a selling mechanism, then Ẽ(θ) is Blackwell
more informative than E∗(θ), for almost all θ.

In other words, E∗(θ) is the Blackwell least informative experiment for every
buyer type among the collection of experiments that can achieve the optimal profit,
subject to the buyer’s incentive constraints. The importance of this result can be seen
from two perspectives: first, we assume the seller could design arbitrarily informative
experiments. If this is not the case, then E∗(θ) gives the minimally informative
experiment for every buyer type that can still achieve the optimal profit; second, we
will show in the next subsection that {E∗(θ)} is the set of experiments most robust
to signal observability (i.e., omniscient or private disclosure) that can achieve the
optimal profit.

3.2 Private Disclosure

In this subsection, we suppose the signal realization is privately observed by the
buyer. Given our formulation in Section 2.2, the seller’s profit under this alternative
situation would be weakly lower than under omniscient disclosure. Our goal is to
analyze whether and when the seller could achieve the same profit.

Lemma 2 (Sufficiency of E∗(θ) under Private Disclosure). Suppose Assumptions 1
through 4 hold and let

(
{Ẽ(θ) = (S̃(θ), π̃(θ))}, {x̃(θ, s̃(θ)), t̃(θ, s̃(θ))}

)
be a menu

of experiments and mechanisms that maximizes the seller’s expected profit, subject
to (ICom) and (IR). If this menu also respects (ICpr), then there exists a transfer rule
{t(θ, s∗i (θ))} such that menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t(θ, s

∗
i (θ))}) also maximizes the

seller’s expected profit, subject to (ICpr) and (IR).

In other words, it suffices to focus on the menu of Blackwell least informative
experiments {E∗(θ)} in analyzing whether and when the seller could achieve the
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same profit under private disclosure as under omniscient disclosure. A proof sketch
is as follows: from item (2) of Remark 2, the optimal allocation under omniscient
disclosure is unique, so x̃(θ, .) must coincide with x∗(θ, .) for every profile realization.
Since the optimal allocation always involves no bundling and that Ẽ(θ) is Blackwell
more informative than E∗(θ) for every buyer type, the seller could design the weighted
average payment scheme for every signal realization s∗i (θ) to achieve the same profit
while respecting the buyer’s incentive constraints.

Despite this simplification, it is still next to impossible to give a necessary and
sufficient condition under which the seller could achieve the same profit with private
disclosure as with omniscient disclosure. Such a task is challenging even with a single
product. For instance, the “reverse price discrimination” condition identified by Wei
and Green (2023) is sufficient but not necessary. With multiple products, there are
at least two more complications: first, as remarked by Kolotilin (2017), with more
than two actions, there are many ways to disobey a recommendation. For instance,
in our context, the buyer could jointly misreport their type and the signal realization
to purchase a product different from what the seller prescribes. Consequently, even if
the “reverse price discrimination” condition holds for every product, the buyer may
still have incentives to deviate. Indeed, whether a particular deviation is profitable
for a buyer type crucially depends on the valuation structure as well as the joint
quality distribution (see Example 2); second, as pointed out in item (2) of Remark
2, the optimal transfer rule under omniscient disclosure is not always unique (see
Example 4), so even if the seller could not achieve the same profit with one particular
transfer rule under private disclosure, it is unclear whether another transfer rule could
fulfill the task.

Given these challenges, there are two directions to proceed: we could put restric-
tions either on the buyer’s value/virtual value, or the common prior of joint quality
distribution. We follow the first direction and identify two mutually exclusive and
practically relevant valuation structures such that the seller can always achieve the
same profit with private disclosure as with omniscient disclosure.

(1) The buyer’s value is additively separable, or equivalently, has constant differ-
ences in product quality and buyer type.
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(2) The buyer’s value has non-decreasing differences in product quality and buyer
type, and the threshold type is independent of product quality.

We focus on case (1) in the current subsection and defer case (2) to the next
section, where we show the seller can achieve the goal by posting a non-discriminatory
price for each product ex ante.

Before presenting the results for case (1), we formalize the idea of “additively
separable valuation” and impose a corresponding stronger condition on the buyer’s
virtual value.

Assumption 1S (Additively Separable Valuation). v(q, θ) = a(q) + b(θ), where a(q)

is absolutely continuous and strictly increasing in q, and b(θ) is continuously differ-
entiable, strictly increasing and weakly concave in θ.

Remark 3: A standard result from partial differential equations shows vqθ(., .) = 0

if and only if v(., .) is of the form a(q) + b(θ). In other words, v(., .) is additively
separable if and only if it has constant differences in product quality and buyer type.

When v(q, θ) = a(q) + b(θ), the virtual value φ(q, θ) = a(q) − c(q) + b(θ) −
1−F (θ)
f(θ)

b′(θ).

Assumption 2S (Strong Vertical Differentiation for Virtual Value). φ(., .) satisfies

(1) The inverse hazard rate 1−F (θ)
f(θ)

is non-increasing in θ.

(2) c(q) is absolutely continuous and non-decreasing in q, and a(q)− c(q) is strictly
increasing in q.

In the context of additively separable valuations, Assumption 2S is slightly stronger
than Assumption 2. For instance, Assumption 2 only requires b(θ)− 1−F (θ)

f(θ)
b′(θ) to be

strictly increasing in θ, while Assumption 2S additionally requires the second term
1−F (θ)
f(θ)

b′(θ) to be non-increasing in θ. For the same reason, Assumption 1S requires
b(.) to be weakly concave so that the distribution function of b(θ) has the monotone
hazard rate property whenever the distribution function of θ does so.
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The following theorem shows that with an additively separable valuation, menu
({E∗(θ)}, {x∗(θ, s∗i (θ)), t

∗(θ, s∗i (θ))}) remains optimal under private disclosure. In
particular, the seller can achieve the same profit as with omniscient disclosure.

Theorem 2 (Optimal Menu with Additively Separable Valuation under Private Dis-
closure). Under Assumptions 1S, 2S, 3, 4 and 5, the seller can achieve the optimal
expected profit, subject to (ICpr) and (IR), with the set of discriminatory experi-
ments {E∗(θ)} and the following set of direct mechanisms: for any θ ∈ [

¯
θ, θ̄] and

i = 1, 2, . . . ,m,

x∗
i (θ, s) =

{
1 if s = s∗i (θ)

0 otherwise

and

t∗(θ, s) =

{
E[v(qi, θ)|s∗i (θ)]−

Vi(θ)
π∗(θ,s∗i (θ))

if s = s∗i (θ)

0 if s = s∗0(θ)
,

where Vi(θ) :=
∫ θ

¯
θ
E[vη(qi, η)|s∗i (η)]π∗(η, s∗i (η))dη.

Remark 4: There are three clarifications regarding the characterization in Theo-
rem 2.

(1) In contrast to Theorem 1, this result crucially relies on the quality of the m

products being mutually independent. As discussed after Assumption 5, this
assumption guarantees that E[h(qi)|qi = maxl ql] ≥ E[h(qi)|qj = maxl ql] for any
non-decreasing function h(.).

(2) Our formulation of additively separable valuation encompasses the special case
of v(q, θ) = q + θ and c(q) = c, so this result generalizes the baseline result of
Wei and Green (2023) to multiple independent products.

(3) Unless the transfer/payment is independent of the signal realization, full disclo-
sure is never optimal under private disclosure, since the buyer has incentives to
under-report the highest quality. Theorem 2 and Lemma 2 together illustrate
that {E∗(θ)} is the set experiments most robust to signal observability that can
achieve the seller’s optimal profit.
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The following lemma explains the special feature of the additively separable valua-
tion structure that enables the seller to achieve the same profit with private disclosure
as with omniscient disclosure.

Lemma 3 (Simplification of Incentive Constraints with E∗(θ) under Private Dis-
closure). Suppose Assumptions 1 through 4 hold and consider any direct mecha-
nism {x(θ, s∗i (θ)), t(θ, s∗i (θ))} such that menu ({E∗(θ)}, {x(θ, s∗i (θ)), t(θ, s∗i (θ))}) max-
imizes the seller’s expected profit, subject to (ICom) and (IR). Further suppose
U(η, s) ≥ U(η, s′; η, s), for some η ∈ [

¯
θ, θ̄] and any s, s′ ∈ S(η).

(1) If v(q, θ) has non-decreasing differences in (q, θ), then U(η, s; θ, s) ≥ U(η, s′; θ, s),
for any θ > η and s, s′ ̸= s∗0(η).

(2) If v(q, θ) has non-increasing differences in (q, θ), then U(η, s; θ, s) ≥ U(η, s′; θ, s),
for any θ < η and s, s′ ̸= s∗0(η).

Recall from Lemma 2 that it suffices to focus on the set of Blackwell least informa-
tive experiments {E∗(θ)} in analyzing whether the seller could achieve the same profit
with private disclosure as with omniscient disclosure. Lemma 3 further simplifies the
analysis of the buyer’s incentive constraints under private disclosure when the set of
experiments is {E∗(θ)}. To intuitively understand this lemma, we restrict attention
to additively separable valuations, where both conditions hold. As argued above,
even if the set of (ICom) constraints is satisfied, the buyer may profit from jointly
misreporting their type and the signal realization under private disclosure, which
means there are many ways for the buyer to disobey the recommendation/misreport
the signal when there are multiple products. For instance, for a type θ buyer, if they
misreport as being type θ′ and the true signal realization is s∗1(θ

′), then they may
profit from reporting signal s∗2(θ

′) and purchasing product 2, instead of truthfully
reporting the signal and purchasing product 1. Roughly speaking, Lemma 3 states
such a deviation would not be profitable if the buyer’s value is additively separable.
More precisely, if the buyer would truthfully report the signal realization conditional
on their truthful report of the type, then they would still do so even if they misre-
port their type, except possibly for the case when the signal realization indicates no
purchase.
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Even with Lemma 3, the proof of Theorem 2 is challenging because with mul-
tiple products and no restriction on each product’s quality distribution, the set of
potentially profitable deviations is still large under private disclosure. We need to
guarantee (1) conditional on their truthful report of the type, the buyer would always
truthfully report the signal realization and (2) the buyer could not gain by jointly
misreporting their type and purchasing more often than recommended. We apply a
novel change of variable involving the threshold quality and the threshold type to
show the desired result.

4 Posted Price Implementation

This section analyzes the role of price discrimination and information design. Sec-
tions 4.1 and 4.2 explore whether and when the seller could achieve the optimal profit
by posting a non-discriminatory price for each product ex ante. Section 4.1 analyzes
the case where the threshold type is constant in product quality. In this case, we show
the seller can always achieve the goal under omniscient disclosure. If in addition the
buyer’s value has non-decreasing differences in product quality and buyer type, then
the seller can also achieve the goal under private disclosure. Section 4.2 analyzes the
case where the threshold type is decreasing in product quality. We first consider the
case where the threshold type is strictly decreasing in product quality. In this case,
we show the seller can achieve the goal under omniscient or private disclosure if and
only if the buyer’s value is identical for every quality-threshold type pair. Then we
use an example to show that the intermediate case is indeterminate: if the threshold
type is weakly but not strictly decreasing in product quality, then an ex-ante and
non-discriminatory posted price mechanism cannot be optimal for all independent
quality distributions, but may be optimal for some value/virtual functions and spe-
cific quality distributions. Section 4.3 explores the optimality of the no disclosure
benchmark in the single product scenario of m = 1. Under omniscient or private
disclosure, we show the seller cannot improve upon the no disclosure benchmark if
the threshold type is constant in product quality. Under omniscient disclosure, we
additionally show the seller can strictly improve upon the no disclosure benchmark
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when this condition fails. Taken together, this section sheds light on the applicability
of the posted price mechanism in the presence of information design.

4.1 Posted Price Implementation: Common Threshold Type

The analysis in Section 3 shows that at the profit-maximizing allocation, the buyer is
either allocated nothing or one unit of one of the products. Consequently, the total
payment can be viewed as the price for the corresponding product. Nevertheless, the
optimal price for each product generally depends either on the buyer’s type (under
the set of Blackwell least informative experiments) or the signal realization (under
full disclosure). In many practical applications, however, the seller posts a non-
discriminatory price for each product before conducting any experiments. We explore
whether and when this pricing behavior can be consistent with profit maximization.

To answer this question, we consider how the threshold type θ⋆(q) (as defined in
Equation 2) varies with the product quality q. Lemma 1 implies that θ⋆(q) must be
non-increasing in q. This subsection analyzes the case where θ⋆(q) is constant in q,
and the next subsection analyzes the case where θ⋆(q) is decreasing in q.

Before proceeding with the characterization, we define an experiment very similar
to E∗(θ), but with no type-specific product. Specifically, let S∗ = {s∗1, s∗2, . . . , s∗m}
be a signal space with m signal realizations. Further let Q∗

i = {q ∈ Q : qi ≥
max1≤j<i qj, qi > maxi<j≤m qj} be the collection of quality profiles in Q := ×m

i=1[
¯
qi, q̄i]

where product i is of the highest realized quality. For any q ∈ Q∗
i , let π∗(s = s∗i |q) = 1.

This experiment is given by
E∗ = (S∗, π∗)

The following proposition shows that when the threshold type is independent of
product quality, the seller can always achieve the optimal profit by posting a non-
discriminatory price for each product ex ante. Equivalently, price discrimination is of
no additional value.

Proposition 2 (Posted Price Implementation: Common Threshold Type). Suppose
Assumptions 1 through 4 hold and θ⋆(q) ≡ θ⋆ for any q ∈ [maxi

¯
qi,maxi q̄i], then
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the seller can achieve the optimal profit, subject to (ICom) and (IR), with menu
(E∗, pi = E[v(qi, θ⋆)|s∗i ]).

If in addition Assumption 5 holds and v(q, θ) has non-decreasing differences in
(q, θ), then menu (E∗, pi = E[v(qi, θ⋆)|s∗i ]) achieves the same profit, when subject
to (ICpr) and (IR), as when subject to (ICom) and (IR).12

When the threshold type is independent of product quality, the buyer’s threshold
quality must be outside the range (max

¯
qi,max q̄i). In other words, depending on

their type, the buyer is either always allocated the product of highest realized qual-
ity, or never allocated any product at the optimum. Consequently, a posted price
mechanism based on the threshold type can induce the profit-maximizing allocation.
Given mutually independent product quality and complementarity between product
quality and buyer type, the buyer’s incentive constraints under private disclosure are
respected as well.

Remark 5: There are two clarifications regarding the characterization in Proposi-
tion 2.

(1) The set of optimal experiments is not unique, and we present the optimal non-
discriminatory experiment. In particular,

q⋆(θ) =

maxi q̄i if θ ≤ θ⋆

≤ maxi
¯
qi if θ > θ⋆

and the set of experiments {E∗(θ)} is discriminatory.

(2) The second part establishes the claim in Section 3.2 that the seller can achieve
the same profit with private disclosure as with omniscient disclosure when the
buyer’s value has non-decreasing differences in product quality and buyer type
and the threshold type is independent of product quality (case 2). Similar to
Theorem 2, this result relies on mutually independent product quality.

12The prescribed menu is an indirect implementation of the optimal profit outcome, so the state-
ment is slightly different from that in Theorem 2.
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Figure 1 illustrates this case by plotting the threshold type as a function of product
quality. Graphically, the level curve of φ(q, θ) = 0 is a horizontal line at θ = θ⋆.

θ⋆(q)

θ⋆

0 maxi
¯
qi maxi q̄i q

φ(q, θ) = 0

Figure 1: Common Threshold Type

Whereas the case of common threshold type is special, the following example
shows it does capture some practically relevant value/virtual value functions.

Example 1 (Common Threshold Type). Consider a generalization of the numerical
example in the introduction: m = 2, c(q) = cq and v(q, θ) = qθ. Suppose 0 < c < 1,
θ ∼ U [0, 1], q1 and q2 are two continuous and mutually independent random variables
with q1 ∼ F1[

¯
q1, q̄1], q2 ∼ F2[

¯
q2, q̄2].

v(q, θ) has strictly increasing differences in (q, θ) and θ⋆(q) = 1+c
2

for any q, so the
conditions for Proposition 2 are satisfied. For both omniscient and private disclosures,
the seller can achieve the optimal profit, subject to the buyer’s incentive constraints,
by conducting an experiment that reveals the identity of the product of higher quality
and setting prices pi =

1+c
2

· E[qi|qi > q−i], for i = 1, 2. Given this menu, the buyer
optimally purchases the product of higher realized quality if their type is at least 1+c

2
.

Otherwise, the buyer does not purchase any product under either signal realization.

More generally, the threshold type is independent of product quality if the buyer’s
value net of the seller’s reservation value is multiplicatively separable, that is, v(q, θ)−
c(q) = a(q) · b(θ). When a(.), b(.) ≥ 0 are both strictly increasing, the condition of
non-decreasing differences in product quality and buyer type is satisfied as well.
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The next example illustrates that the condition of v(., .) having non-decreasing
differences in (q, θ) is indispensable for incentive compatibility under private disclo-
sure.

Example 2 (Necessity of Non-decreasing Differences of v(q, θ)). Consider again the
case of m = 2 and θ ∼ U [0, 1]. Let c(q) = 0 and

v(q, θ) =

qθ if 0 ≤ θ ≤ 3−q
2

(6− q)θ − 2θ2 − (3−q)2

2
if 3−q

2
< θ ≤ 1

q1 ≡ 3
2

and q2 ∼ U [0, 2].

The threshold type θ⋆(q) = 1
2

for any q ∈ [0, 2]. Suppose the seller conducts an
experiment that reveals the identity of the product of higher quality and sets prices
p1 = E[v(q1, 12)|q1 > q2] =

3
4

and p2 = E[v(q2, 12)|q2 > q1] =
7
8
. Since the experiment is

non-discriminatory, the only set of relevant constraints under omniscient disclosure
is (IR). The buyer would indeed purchase the offered product under either signal
realization if θ > 1

2
. Under private disclosure, however, when the experiment reveals

q2 > q1, for a buyer with type θ = 1, they would optimally purchase product 1 (which
yields a surplus of 5

8
) instead of product 2 (which yields a surplus of 7

12
). The same

holds for any θ close to 1, so (ICpr) is violated. In other words, this menu cannot
achieve the same profit with private disclosure as with omniscient disclosure.13

For the menu in Proposition 2, a buyer with the threshold type would never
misreport the signal realization. If v(., .) has non-decreasing differences in (q, θ), then
Lemma 3 shows that nor would any buyer with type θ′ > θ. The assumption of
common threshold type only guarantees that v(., .) has non-decreasing differences in
(q, θ) around the threshold type, but the local condition may not hold globally. In
Example 2, v(., .) has decreasing differences in (q, θ) when they are both close to their
upper bounds. Intuitively, this implies that given a high product quality, a high type
buyer may have a lower marginal value for quality compared with the threshold type
buyer, which explains why they may opt for the lower expected quality product. As
discussed in Section 3.2, there is no such deviation when there is only one product,

13This example can adapted such that q1 is non-degenerate.
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which showcases the additional complication in guaranteeing incentive compatibility
with multiple products under private disclosure.

4.2 Posted Price Implementation: Decreasing Threshold Type

In this subsection, we turn to the case where θ⋆(q) is decreasing in q. Let qE =

max{maxi
¯
qi, q

⋆(θ̄)}, then [qE,maxi q̄i] is the range of highest product quality realiza-
tion relevant for the profit-maximizing allocation and [qE, q

⋆(
¯
θ)] ⊂ [qE,maxi q̄i] is the

range where θ⋆(q) may vary with q. We start by considering the case where θ⋆(q) is
strictly decreasing on [qE, q

⋆(
¯
θ)].

Before preceding with the characterization, we describe the experiment that in-
volves full disclosure. Let S = Q be the signal space. Moreover, for any q ∈ Q and
q′ ̸= q, let πfull(s = q|q) = 1 and πfull(s = q′|q) = 0. This experiment is given by

Efull = (Q, πfull)

The following proposition fully characterizes the condition under which price dis-
crimination is of no additional value when θ⋆(.) is strictly decreasing.

Proposition 3 (Posted Price Implementation: Strictly Decreasing Threshold Type).
Suppose Assumptions 1 through 4 hold and θ⋆(q) is strictly decreasing in q on [qE, q

⋆(
¯
θ)],

then the seller can achieve the optimal profit, subject to (ICom) and (IR), with a set
of experiments {Ẽ(θ)} and an ex-ante posted price mechanism (pi)

m
i=1 if and only if

v(q, θ⋆(q)) ≡ v⋆, for any q ∈ [qE,maxi q̄i].

When this condition holds, one optimal menu is
(
Efull, pi = v⋆

)
. Moreover, this

menu achieves the same profit, when subject to (ICpr) and (IR), as when subject
to (ICom) and (IR).

In other words, given strictly decreasing threshold type, price discrimination is
not beneficial to the seller if and only if the buyer’s value is identical for every
quality-threshold type pair. To understand this result, notice if an ex-ante and non-
discriminatory posted price mechanism is optimal, then the buyer’s payment for any
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product cannot depend on their type in the optimal menu involving the set of Black-
well least informative experiments. For the incentive constraints to be respected, the
price for any product i such that q̄i > qE must be identical, which implies that the
buyer’s value must be identical for every quality-threshold type pair.

Remark 6: Similar to the characterization in Proposition 2, the set of optimal ex-
periments is not unique, and we present the optimal non-discriminatory experiment.

The left panel of Figure 2 illustrates the special case in Proposition 3 by plotting
the threshold type as a function of product quality. Graphically, the level curve of
φ(q, θ) = 0 coincides with a level curve of v(q, θ).

θ⋆(q)

0 qE maxi q̄i q

φ(q, θ) = 0
v(q, θ) = v⋆

(a) v(q, θ⋆(q)) = v⋆

θ⋆(q)

θ⋆ = 1− 1
e

0 1 2 q

(b) Example 4

Figure 2: Decreasing Threshold Type

The case of strictly decreasing threshold type captures almost all value/virtual
value functions, but the case of common value for every quality-threshold type pair
is very special. The following example offers one possibility using a special class of
additively separable valuations.

Example 3 (Common Value for Quality-Threshold Type Pair). Consider again the
case of m = 2 and θ ∼ U [0, 1]. Let c(q) = 0 and

v(q, θ) =

ln( 1
1−θ

) + q if 0 ≤ θ ≤ 1− 1
e

eθ + q + 2− e if 1− 1
e
< θ ≤ 1

Each qi can be an arbitrary random variable with support on [
¯
qi, q̄i] such that 0 ≤

¯
qi <
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q̄i ≤ 1.

The threshold type θ⋆(q) = 1 − eq−1 and v(q, θ⋆(q)) = 1 for any q ∈ [0, 1], so the
conditions in Proposition 3 are satisfied. For both omniscient and private disclosures,
the seller can achieve the optimal profit, subject to the buyer’s incentive constraints,
by conducting an experiment that reveals the exact quality of the two products and
setting prices pi = 1, for i = 1, 2. Given this menu, the buyer optimally purchases
the product of higher realized quality if q ≥ q⋆(θ) = max{1− ln( 1

1−θ
), 0}.

A slightly more general buyer’s value function can be constructed by modifying
v(q, θ) = b ln( 1

1−θ
) + a(q) to make it well-defined at θ = 1 for any b > 0 and a(.) < b

non-decreasing, as in Example 3.

Finally, we consider the case where θ⋆(q) is weakly but not strictly decreasing
on [qE, q

⋆(
¯
θ)]. The characterizations in Propositions 2 and 3 are distribution-free

for quality, that is, given maxi q̄i and maxi
¯
qi, we are able to identify conditions

on v(q, θ) and φ(q, θ) such that price discrimination is not beneficial for any joint
quality distribution. The following example shows this is not possible when θ⋆(q) is
constant in some range, but strictly decreasing in some other range on [qE, q

⋆(
¯
θ)].

Specifically, there exist value/virtual value functions such that price discrimination
is not beneficial for some joint quality distributions, but beneficial for some others.

Example 4 (Possible Indeterminacy with Weakly Decreasing Threshold Type). Con-
sider again the case of m = 2 and θ ∼ U [0, 1]. Let c(q) = 0 and

v(q, θ) =



q ln( 1
1−θ

) if 0 ≤ θ ≤ 1− 1
e

and 0 ≤ q ≤ 1

ln( 1
1−θ

) + q − 1 if 0 ≤ θ ≤ 1− 1
e

and 1 < q ≤ 2

q + qe
[
θ − (1− 1

e
)
]

if 1− 1
e
< θ ≤ 1 and 0 ≤ q ≤ 1

q + e
[
θ − (1− 1

e
)
]

if 1− 1
e
< θ ≤ 1 and 1 < q ≤ 2

• Scenario 1: q1 ∼ U [0, 2] and q2 ∼ U [
¯
q2, q̄2], where 0 <

¯
q2 < 1 < q̄2 < 2.

• Scenario 2: q2 ∼ U [0, 2] and q2 ≡ 3
4
.

The threshold type as function of product quality is plotted in the right panel of

31



Figure 2 and is given by

θ⋆(q) =

1− 1
e

if 0 ≤ q ≤ 1

1− eq−2 if 1 < q ≤ 2

For both omniscient and private disclosures, the seller can achieve the opti-
mal profit, subject to the buyer’s incentive constraints, with an ex-ante and non-
discriminatory posted price mechanism in Scenario 2, but not in Scenario 1.

An analogous argument to the proof of Lemma 2 shows it is without loss to
restrict to the set of experiments {E∗(θ)}. Notice v(q, θ⋆(q)) = 1 for q > 1, so an
analogous argument to the proof of Proposition 3 shows the only possible posted
prices in Scenario 1 are p1 = p2 = 1. Since q⋆(1 − 1

e
) = 0 and v(q, 1 − 1

e
) < 1 for

0 < q < 1, buyer type θ⋆ = 1− 1
e

would prefer the menu with experiment E∗(1− 1
e
−ε)

for ε > 0 small, which contradicts with profit maximization.

In Scenario 2, however, the seller can achieve the optimal profit by offering the
set of experiments {E∗(θ)} and setting prices p1 = 1 and p2 = 17

24
. Intuitively, since

q̄2 < 1, the buyer’s local incentive constraints are not sufficient to pin down p2. By
setting p2 < v(q2, 1− 1

e
), the seller can induce buyer type θ⋆ = 1− 1

e
to take the menu

designed for their type. This is only possible when m > 1. For m = 1, the buyer can
gain information rent only from one product, which is uniquely pinned down by the
envelope formula (recall item 2 of Remark 2).14

Remark 7: An almost identical argument to the proof of Proposition 3 and Exam-
ple 4 can establish the following two statements.

(1) For m = 1, Propositions 2 and 3 characterize all the possibilities where the
seller can achieve the optimal profit by posting a non-discriminatory price ex
ante.

(2) For m > 1, if θ⋆(q) is weakly but not strictly decreasing on [qE, q
⋆(
¯
θ)], then

for any v(q, θ) and φ(q, θ), there exist quality distributions that are mutually
14Similar to Example 2, this example can be adapted such that q2 is non-degenerate.
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independent such that the seller cannot achieve the optimal profit by posting a
non-discriminatory price ex ante.

The following table summarizes the results in Sections 4.2 and 4.3.
How θ⋆(q) varies with q Whether price discrimination is beneficial

θ⋆(q) ≡ θ⋆
Omniscient disclosure: No for any quality distributions.

Private disclosure: No for any independent quality distributions if v(q, θ) has non-decreasing differences.

θ⋆(q) is strictly decreasing Omniscient or private disclosure: No for any quality distributions if v(q, θ⋆(q)) ≡ v⋆;
Yes for any quality distributions otherwise.

θ⋆(q) is weakly decreasing Omniscient or private disclosure: Yes in general;
No for specific value/virtual value functions and quality distributions (only if m ≥ 2).

4.3 Single-product Scenario

Our analysis suggests that no disclosure is hardly ever optimal when there are multiple
products. Intuitively, there are two roles of information design: first, information
disclosure can induce a more efficient allocation and create a larger surplus for the
seller to extract from; second, information design can facilitate the seller to better
screen the buyer and reap a larger share of the surplus. With multiple products,
the first effect is always at work, even when the seller always wants to sell to the
same buyer types irrespective of the quality realization. Based on this observation,
we focus on the single-product scenario of m = 1, and analyze whether and when no
disclosure is consistent with profit maximization.

For notational simplicity, we write the product quality as q ∼ G[
¯
q, q̄]. Before

presenting the characterization, we first define the optimal no disclosure menu. Let
Sno = {s0} be a singleton set. For any q ∈ Q, let πno(s = s0|q) = 1. Then no
disclosure is given by the experiment

Eno = (Sno, πno)

With a slight abuse of notation, let θ⋆ be the threshold type with no disclosure,
that is,

θ⋆ =

θ̄ if E[φ(q, θ)] ≤ 0 for all q ∈ [
¯
q, q̄]

inf{θ ∈ [
¯
θ, θ̄] : E[φ(q, θ)] > 0} otherwise
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The optimal no disclosure menu is (Eno, p = E[v(q, θ⋆)]). The following proposi-
tion characterizes the circumstances under which no disclosure can be consistent with
profit maximization for m = 1.

Proposition 4 (Optimality of No Disclosure for m = 1). Suppose Assumptions 1, 2,
4 hold and m = 1, then menu (Eno, p = E[v(q, θ⋆)]) maximizes the seller’s expected
profit, subject to (ICom) and (IR), if and only if θ⋆(q) = θ⋆, for any q ∈ [

¯
q, q̄].

Moreover, this menu achieves the same profit, when subject to (ICpr) and (IR), as
when subject to (ICom) and (IR).

Given our analysis, Proposition 4 is immediate. By Theorem 1, the seller can
maximize their expected profit, subject to (ICom) and (IR), if the expected utility of
the lowest type is 0 and the buyer is allocated the product if the quality realization
is above their threshold quality. With a constant threshold type, both conditions are
satisfied when the buyer chooses optimally in the no disclosure benchmark. When
the threshold type is not constant, the threshold quality must be different for a
continuum of buyer types, so the buyer’s optimal choice must be different from the
profit-maximizing allocation with a positive probability.

Remark 8: Proposition 4 shows that whether information design is beneficial to a
single-product monopolist crucially relies on whether the threshold type depends on
the product quality. For instance, Smolin (2023) shows that no disclosure is optimal
when v(q, θ) = qθ and c(q) = 0, whereas Wei and Green (2023) show that no disclosure
is not optimal when c(q) = c > 0. Our analysis suggests that the disparity is not so
much because it is always efficient to sell the product in the first case, nor is it so
much because the seller has a cost in the second case. The essential difference is that
the threshold type is independent of product quality in the first but not the second
case. Intuitively, Propositions 2 and 3 suggest that the seller has additional incentives
to screen the buyer in the second case. On the other hand, Example 1 shows that if
the seller’s cost is also linear in quality, that is, c(q) = cq, then no disclosure remains
optimal.
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5 Concluding Remarks

In this paper, we analyzed the profit-maximizing menu of experiments and selling
mechanisms under both omniscient and private disclosures for a monopolist seller
with multiple products of distinct quality. In addition to the characterization of the
optimal menu, there are two take-aways: first, information disclosure can almost
always increase the seller’s expected profit when a more efficient allocation can be
induced; second, price discrimination, when combined with information design, can
improve the seller’s expected profit only when the minimum type of buyer to which
the seller wants to relinquish a product depends on the product’s quality realization.

For future research, we view three directions as particularly worthy of investiga-
tion: first, it is challenging but important to provide a complete characterization of
the monopolist’s profit-maximizing menu under private disclosure. Such a character-
ization would offer more insight into the seller’s trade-off between creating a larger
surplus through a more informative experiment and leaving less information rent
through a less informative experiment for some buyer types; second, if we view the
single buyer as a collection of buyers of measure one, then consumption externalities
may be an important consideration in some practical applications; third, competi-
tion among sellers can also play an important role. To be concrete, if every seller
produces an identical set of products, then the insight of Kamenica and Gentzkow
(2017) suggests that more information is likely to be revealed at the optimum and
our analysis can be generalized. On the other hand, if each seller produces a distinct
set of products and can conduct experiments only with respect to the quality of their
own products, then how competition would affect the optimal disclosure policy is far
from obvious, and even less can be said about the interaction with optimal pricing.15

15An interesting special case is where there are two asymmetric sellers, one with products of
deterministic quality and the other with products of uncertain quality. We thank Yingni Guo for
this suggestion.
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Appendix

In this appendix, we provide the proofs omitted from the main text.

Proof of Lemma 1: Suppose not, then ∃θ < θ′ such that q⋆(θ) < q⋆(θ′). By
the definition of q⋆(θ′), we must have for any q ∈ (q⋆(θ), q⋆(θ′)), φ(q, θ′) ≤ 0. By
Assumption 2, we have

φ(q, θ) < φ(q, θ′) ≤ 0 (A1)

On the other hand, q > q⋆(θ), so by Assumption 2 again, we have for any δ ∈
(0, q − q⋆(θ)),

φ(q, θ) > φ(q⋆(θ) + δ, θ) > 0,

which contradicts with inequality (A1).

Proof of Theorem 1: We prove the lemma in three steps: first, we show a necessary
condition of the set of (ICom) constraints is the envelope formula; second, we solve for
a candidate optimal menu of experiments and mechanisms; third, we show the sets
of incentive constraints, (ICom) and (IR), are indeed satisfied at the proposed menu
of experiments and mechanisms.

Step 1: Let V (θ′; θ) =
∫
s∈S(θ′) U(θ′, s; θ)π(θ′, s)ds be the expected utility of a type

θ buyer when they report and act as being type θ′ and let V (θ) := V (θ; θ) be the
expected utility when they report truthfully. Then a necessary condition of the set
of (ICom) constraints is the following envelope formula:

V (θ) = V (
¯
θ) +

∫ θ

¯
θ

[∫
s∈S(η)

(
m∑
i=1

xi(η, s)E[vη(qi, η)|s, E(η)]

)
π(η, s)ds

]
dη (A2)

Let δ(θ′; θ) = V (θ′; θ)− V (θ) be the expected utility gain of a type θ buyer when
they report and act as being type θ′. Notice

∫
s∈S(θ′) max{U(θ′, s; θ), 0}π(θ′, s)ds ≥∫

s∈S(θ′) U(θ′, s; θ)π(θ′, s)ds, so the set of (ICom) constraints implies δ(θ′; θ) ≤ 0 =

δ(θ′; θ′). For any θ1, θ2 ∈ [
¯
θ, θ̄], we have |V (θ1) − V (θ2)| ≤ |V (θ1) − V (θ1; θ2)| =

|
∫
s∈S(θ1)[U(θ1, s) − U(θ1, s; θ2)]π(θ1, s)ds| ≤ maxq,θ |vθ(q, θ)||θ1 − θ2|, where the last

inequality is by Assumption 3 of unit demand. In other words, V (.) is Lipschitz
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continuous and, in particular, absolutely continuous and differentiable almost every-
where. Consequently, ∂δ(θ′;θ)

∂θ
|θ=θ′ =

∂V (θ′;θ)
∂θ

|θ=θ′ − V ′(θ′) = 0 and

V ′(θ) =

∫
s∈S(θ)

(
m∑
i=1

xi(θ, s)E[vθ(qi, θ)|s, E(θ)]

)
π(θ, s)ds

By the fundamental theorem of calculus, we obtain envelope formula (A2).

Step 2: The seller’s expected profit is given by

EP = Eθ

[∫
s∈S(θ)

t(θ, s)π(θ, s)ds

]
−Eθ

[∫
s∈S(θ)

(
m∑
i=1

xi(θ, s)E[c(qi)|s, E(θ)]

)
π(θ, s)ds

]

Notice that∫
s∈S(θ)

t(θ, s)π(θ, s)ds =

∫
s∈S(θ)

(
m∑
i=1

xi(θ, s)E[v(qi, θ)|s, E(θ)]

)
π(θ, s)ds− V (θ)

Together with the envelope formula, we have

EP = Eθ

[∫
s∈S(θ)

(
m∑
i=1

xi(θ, s)E
[
v(qi, θ)− c(qi)−

1− F (θ)

f(θ)
vθ(qi, θ)|s, E(θ)

])
π(θ, s)ds

]
−V (

¯
θ)

Recall the buyer’s virtual value φ(q, θ) := v(q, θ)− c(q)− 1−F (θ)
f(θ)

vθ(q, θ). It follows
that the seller’s expected profit can be simplified as

EP = Eθ

[∫
s∈S(θ)

(
m∑
i=1

xi(θ, s)E[φ(qi, θ)|s, E(θ)]

)
π(θ, s)ds

]
− V (

¯
θ) (A3)

The set of (IR) constraints implies V (
¯
θ) ≥ 0, so in order to maximize Equa-

tion (A3), the seller chooses U(
¯
θ, s) = 0, for any s ∈ S(

¯
θ), so that V (

¯
θ) = 0. More-

over, by Assumption 2, φ(., θ) is strictly increasing in q, for any θ and q ≥ q⋆(θ). By
choosing E(θ) = E∗(θ) and x∗

i (θ, s
∗
i (θ)) = 1, the seller can maximize their expected

profit for every q ∈ Q.
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Step 3: It remains to show the two sets of incentive constraints, (ICom) and (IR),
are both respected at the proposed menu of experiments and mechanisms. First, for
any θ ∈ [

¯
θ, θ̄] and i = 1, 2, . . . ,m,

U(θ, s∗0(θ)) = 0 and U(θ, s∗i (θ)) =
Vi(θ)

π∗(θ, s∗i (θ))
≥ 0

In other words, the set of (IR) constraints is respected.

Next, for the set of (ICom) constraints, we need to verify that for any θ, θ′ ∈ [
¯
θ, θ̄],

m∑
i=1

Vi(θ) ≥
m∑
i=1

(
max

{
E[v(qi, θ)|s∗i (θ′)]− E[v(qi, θ′)|s∗i (θ′)] +

Vi(θ
′)

π∗(θ′, s∗i (θ
′))

, 0

})
π∗(θ′, s∗i (θ

′))

Since Vi(θ) ≥ 0, for any θ ∈ [
¯
θ, θ̄], it suffices to show

Vi(θ) ≥ (E[v(qi, θ)|s∗i (θ′)]− E[v(qi, θ′)|s∗i (θ′)]) π∗(θ′, s∗i (θ
′)) + Vi(θ

′) (A4)

Let
Ai(θ

′; θ) = Vi(θ)− Vi(θ
′)

Bi(θ
′; θ) = (E[v(qi, θ)|s∗i (θ′)]− E[v(qi, θ′)|s∗i (θ′)]) π∗(θ′, s∗i (θ

′))

Then Inequality (A4) is equivalent to Ai(θ
′; θ) ≥ Bi(θ

′; θ), for any θ, θ′ ∈ [
¯
θ, θ̄].

Let Q̃∗
i (η) = {q ∈ Q : s = s∗i (η) given q} be the collection of actual quality

profiles where signal s∗i (η) is sent. Lemma 1 implies that Q̃∗
i (η) ⊂ Q̃∗

i (η
′), for any

η ≤ η′ and i = 1, 2, . . . ,m. Consequently, by the Fubini’s theorem (i.e., changing the
order of the integral) and Assumption 1, we have

Bi(θ
′; θ) =

∫
q∈Q̃∗

i (θ
′)

(v(qi, θ)− v(qi, θ
′)) dG(q)

=

∫
q∈Q̃∗

i (θ
′)

(∫ θ

θ′
vη(qi, η)dη

)
dG(q)

=

∫ θ

θ′

(∫
q∈Q̃∗

i (θ
′)

vη(qi, η)dG(q)

)
dη
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≤
∫ θ

θ′

(∫
q∈Q̃∗

i (η)

vη(qi, η)dG(q)

)
dη

= Ai(θ
′; θ)

We conclude that the two sets of incentive constraints, (ICom) and (IR), are both
respected at the proposed menu of experiments and mechanisms.

Proof of Proposition 1: Let Θ0 = {θ ∈ [
¯
θ, θ̄] : Ẽ(θ) ⊁ E∗(θ)} be the collection

of buyer types where Ẽ(θ) is not sufficient/Blackwell more informative than E∗(θ)

(Blackwell, 1953). Suppose by contradiction that P(θ ∈ Θ0) > 0.

Now consider any θ ∈ Θ0. Since Ẽ(θ) ⊁ E∗(θ), there exists a signal s0 ∈ S̃(θ)

and two collections of quality profiles Q0
i ⊂ Q∗

i (θ) and Q0
j ⊂ Q∗

j(θ), with i, j ∈
{0, 1, 2, . . . ,m} and P(Q0

i ),P(Q0
j) > 0, such that π̃(θ)(s0|qi), π̃(θ)(s0|qj) > 0, for any

quality profile qi ∈ Q0
i and qj ∈ Q0

j . (Otherwise for any s̃(θ) ∈ S̃(θ), there exists
l ∈ {0, 1, 2, . . . ,m} such that

∫
q∈Q∗

l (θ)
π̃(θ, s̃(θ)|q)dq = 1 and Ẽ(θ) would be sufficient

for E∗(θ).) Consequently, for a positive measure of quality realization q ∈ Q0
i∪Q0

j , the
allocation associated with experiment Ẽ(θ), x̃(θ, q) ̸= x∗(θ, q). On the other hand,
by the proof of Theorem 1, menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t

∗(θ, s∗i (θ))}) maximizes the
seller’s profit for almost all θ ∈ [

¯
θ, θ̄] and q ∈ Q, subject to (ICom) and (IR). We thus

have, ∫
s̃∈S̃(θ)

t̃(θ, s̃)π̃(θ, s̃)ds <

∫
s∈S∗(θ)

t∗(θ, s)π∗(θ, s)ds, (A5)

for almost all θ ∈ Θ0.∫
s̃∈S̃(θ)

t̃(θ, s̃)π̃(θ, s̃)ds ≤
∫
s∈S∗(θ)

t∗(θ, s)π∗(θ, s)ds, (A6)

for all θ ∈ [
¯
θ, θ̄]\Θ0.

Let EP(Ẽ(θ)) be the expected profit associated with {Ẽ(θ)} and the corresponding
incentive-compatible selling mechanism and let EP(E∗(θ)) be the expected profit char-
acterized in Theorem 1. Inequalities (A5) and (A6) together imply that EP(Ẽ(θ)) <

EP(E∗(θ)), which contradicts with the assumption of profit maximization.
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Proof of Lemma 2: By Proposition 1, Ẽ(θ) is sufficient/Blackwell more informative
than E∗(θ), for almost all θ. Since E∗(θ) is standard, the probability measure induced
by π̃(θ) is a stochastic transformation of the probability measure induced by π∗(θ)

(Blackwell, 1953). For any q ∈ Q∗
i (θ), we know π∗(θ, s|q) = 0, for any s ̸= s∗i (θ).

Consequently, we can partition the signal space S̃(θ) into m+ 1 sets {S̃i(θ)}mi=0 such
that for any q ∈ Q∗

i (θ), π̃(θ, s|q) = 0, for any s ∈ S̃(θ)\S̃i(θ).

Let Ri(θ, s) := π̃(θ,s)
π∗(θ,s∗i (θ))

. Then Ri(θ, s) induces a probability measure on S̃i(θ),
that is,

∫
s∈S̃i(θ)

Ri(θ, s)ds = 1, for almost all θ and any i = 0, 1, . . . ,m.

Let t(θ, s∗i (θ)) :=
∫
s∈S̃i(θ)

t̃(θ, s)Ri(θ, s)ds. By the proof of Theorem 1, as long as
V (

¯
θ) = 0 and the incentive constraints are respected, menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t(θ, s

∗
i (θ))})

would maximize the seller’s expected profit, subject to (ICom) and (IR). Since (ICpr)
implies (ICom), if we could show that menu ({E∗(θ)}, {x∗(θ, s(θ)), t(θ, s(θ))}) re-
spects (ICpr) and (IR) and V (

¯
θ) = 0, then we know the menu would also maximize

the seller’s expected profit, subject to the two sets of incentive constraints.

First, since menu ({Ẽ(θ) = (S̃(θ), π̃(θ))}, {x̃(θ, s̃(θ)), t̃(θ, s̃(θ))}) maximizes the
seller’s expected profit, subject to (ICom) and (IR), by the proof of Theorem 1,
x̃(θ, q) = x∗(θ, q) for almost all θ ∈ [

¯
θ, θ̄] and q ∈ Q. Together with the defini-

tion of t(θ, s∗i (θ)), we know V (
¯
θ) = 0.

Next, we consider the set of (IR) constraints. Again by profit maximization of
menu ({Ẽ(θ) = (S̃(θ), π̃(θ))}, {x̃(θ, s̃(θ)), t̃(θ, s̃(θ))}), x̃(θ, s) = 0, for any s ∈ S̃0(θ).
Together with (IR), we must have t̃(θ, s) = 0, for any s ∈ S̃0(θ), which implies
t(θ, s∗0(θ)) = 0. We thus have for any θ ∈ [

¯
θ, θ̄] and i = 1, 2, . . . ,m,

U(θ, s∗0(θ)) = −t(θ, s∗0(θ)) = 0 and

U(θ, s∗i (θ)) =

∫
s∈S̃i(θ)

(
E[v(qi, θ)|s]− t̃(θ, s)

)
Ri(θ, s)ds =

∫
s∈S̃i(θ)

U(θ, s)Ri(θ, s)ds ≥ 0

Equivalently, menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t(θ, s
∗
i (θ))}) respects (IR).
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Finally, we consider the set of (ICpr) constraints. For any θ, θ′ ∈ [
¯
θ, θ̄], we have

m∑
i=0

max
0≤j≤m

{
U(θ′, s∗j(θ

′); θ, s∗i (θ
′)), 0

}
π(θ′, s∗i (θ

′))

=
m∑
i=0

max
1≤j≤m

{
E[v(qj, θ)|s∗i (θ′)]− t(θ′, s∗j(θ

′)), 0
}
π(θ′, s∗i (θ

′))

=
m∑
i=0

max
1≤j≤m

{∫
s∈S̃i(θ′)

E[v(qj, θ)|s]Ri(s, θ
′)ds−

∫
s′∈S̃j(θ′)

t(θ′, s′)Rj(s
′, θ′)ds′, 0

}
π(θ′, s∗i (θ

′))

≤
m∑
i=0

max
1≤j≤m

{∫
s∈S̃i(θ′)

(
E[v(qj, θ)|s]− inf

s′∈S̃j(θ′)
t(θ′, s′)

)
Ri(s, θ

′)ds, 0

}
π(θ′, s∗i (θ

′))

=
m∑
i=0

max
1≤j≤m

{∫
s∈S̃i(θ′)

sup
s′∈S̃j(θ′)

U(θ′, s′; θ, s)Ri(s, θ
′)ds, 0

}
π(θ′, s∗i (θ

′))

≤
m∑
i=0

∫
s∈S̃i(θ′)

sup
s′

{U(θ′, s′; θ, s), 0} π(θ′, s)ds

=

∫
s∈S̃(θ′)

sup
s′

{U(θ′, s′; θ, s), 0} π(θ′, s)ds

≤
∫
s∈S̃(θ)

U(θ, s)π(θ, s)ds

=
m∑
i=0

U(θ, s∗i (θ))π(θ, s
∗
i (θ))

We conclude that menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t(θ, s
∗
i (θ))}) also respects (ICpr).

Proof of Lemma 3: Since menu ({E∗(θ)}, {x(θ, s∗i (θ)), t(θ, s∗i (θ))}) maximizes the
seller’s expected profit, subject to (ICom) and (IR), the proof of Theorem 1 implies
x(θ, s) = x∗(θ, s) for almost all θ ∈ [

¯
θ, θ̄] and s ∈ S∗

i (θ). Consequently, for any
i, j = 1, 2, . . . ,m, we have

U(η, s∗i (η); θ, s
∗
i (η))− U(η, s∗j(η); θ, s

∗
i (η))

= E[v(qi, θ)− v(qj, θ)|s∗i (η)]−
(
t(η, s∗i (η))− t(η, s∗j(η))

)
(A7)

Under signal s∗i (η), qi ≥ qj. If v(., .) has increasing differences in (q, θ) and θ > η
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or v(., .) has decreasing differences in (q, θ) and θ < η, we have

E[v(qi, θ)− v(qj, θ)|s∗i (η)] ≥ E[v(qi, η)− v(qj, η)|s∗i (η)] (A8)

Substituting Inequality (A8) into Equation (A7), we have

U(η, s∗i (η); θ, s
∗
i (η))− U(η, s∗j(η); θ, s

∗
i (η))

≥ E[v(qi, η)− v(qj, η)|s∗i (η)]−
(
t(η, s∗i (η))− t(η, s∗j(η))

)
= U(η, s∗i (η))− U(η, s∗j(η); η, s

∗
i (η))

≥ 0,

as desired.

Proof of Theorem 2: By Theorem 1, menu ({E∗(θ)}, {x∗(θ, s∗i (θ)), t
∗(θ, s∗i (θ))})

maximizes the seller’s expected profit, subject to (ICom) and (IR), so it suffices to
show this menu also respects (ICpr). We prove the theorem in three steps: first, we
show it is without loss to restrict to the case of b(θ) = θ; second, we show conditional
on their truthful report of the type, the buyer has incentives to truthfully report the
signal realization, that is, U(θ, s) ≥ U(θ, s′; θ, s) for any θ ∈ [

¯
θ, θ̄] and s, s′ ∈ S∗(θ);

third, we show the set of (ICpr) constraints is respected.

Step 1: For η := b(θ), let H be the distribution of η and h be the density function
of η. Since the identity function is continuously differentiable, strictly increasing and
weakly concave, it suffices to show η also has the monotone hazard rate property,
that is, 1−H(η)

h(η)
is non-increasing in η.

Since b(.) is strictly increasing, b−1 exists and is strictly increasing. Moreover, b(.)
is continuously differentiable and weakly concave, so b′(.) > 0 almost everywhere and
is non-increasing. Simple calculation shows

H(x) = F (b−1(x)) and h(x) = f(b−1(x))(b−1)′(x)

It follows that 1−H(η)
h(η)

= 1−F (b−1(η))
f(b−1(η))(b−1)′(η)

= 1−F (b−1(η))
f(b−1(η))

b′(b−1(η)) is non-increasing.
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Step 2: Let v(q, θ) = a(q)+θ. Since U(θ, s∗j(θ)) ≥ 0 = U(θ, s∗0(θ); θ, s
∗
j(θ)), it suffices

to show the following two conditions.

• For any i, j = 1, 2, . . . ,m, U(θ, s∗j(θ)) ≥ U(θ, s∗i (θ); θ, s
∗
j(θ)), that is,

E[a(qi)|s∗i (θ)]− E[a(qi)|s∗j(θ)] ≥

∫ θ

¯
θ
π∗(η, s∗i (η))dη

π∗(θ, s∗i (θ))
−

∫ θ

¯
θ
π∗(η, s∗j(η))dη

π∗(θ, s∗j(θ))
(A9)

• For any i = 1, 2, . . . ,m, 0 = U(θ, s∗0(θ)) ≥ U(θ, s∗i (θ); θ, s
∗
0(θ)), that is,

E[a(qi)|s∗i (θ)]− E[a(qi)|s∗0(θ)] ≥

∫ θ

¯
θ
π∗(η, s∗i (η))dη

π∗(θ, s∗i (θ))
(A10)

The buyer’s virtual value φ(q, θ) = a(q) − c(q) + θ − 1−F (θ)
f(θ)

. By Assumption 2S,
(a− c)(.) is strictly increasing, so (a− c)−1 exists. We define the modified threshold
quality as follows:

q̃(θ) =


(a− c)−1

(
1−F (

¯
θ)

f(
¯
θ)

− θ
)

if θ <
¯
θ

(a− c)−1
(

1−F (θ)
f(θ)

− θ
)

if θ ∈ [
¯
θ, θ̄]

(a− c)−1
(

1−F (θ̄)

f(θ̄)
− θ
)

if θ > θ̄

Then q̃(.) is absolutely continuous and strictly decreasing, and its range covers
[mini

¯
qi,maxi q̄i]. Consequently, we can construct m mutually independent random

variables ηi such that q̃(ηi) = qi. Let θLi = q̃−1(q̄i), θHi = q̃−1(
¯
qi) and denote the

distribution function of ηi by F̃i. It follows that each F̃i is absolutely continuous on
[θLi , θ

H
i ]. Now let θEi = max{

¯
θ, θLi } be the effective lowest type for product i.

Consider the first term on the RHS of Inequality (A9).∫ θ

¯
θ
π∗(η, s∗i (η))dη

π∗(θ, s∗i (θ))

=

∫ θ

¯
θ
P(qi ≥ max{q−i, q

⋆(η)})dη
P(qi ≥ max{q−i, q⋆(θ)})
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=

∫ θ

¯
θ
P(ηi ≤ min{η−i, η})dη
P(ηi ≤ min{η−i, θ})

=

∫ θ

θEi
P(ηi ≤ min{η−i, η})dη
P(ηi ≤ min{η−i, θ})

=

∫ θ

θEi

(∫ η

θLi
(1− F̃−i(x))dF̃i(x)

)
dη

P(ηi ≤ min{η−i, θ})

=

∫ θ

θLi
(θ − η)(1− F̃−i(η))dF̃i(η)−

∫ θEi
θLi

(θEi − η)(1− F̃−i(η))dF̃i(η)

P(ηi ≤ min{η−i, θ})
(Fubini’s theorem)

= E[θ − ηi|ηi ≤ min{η−i, θ}]− E[1{ηi ≤ θEi }(θEi − ηi)|ηi ≤ min{η−i, θ}]

= θ − E[max{ηi,
¯
θ}|ηi ≤ min{η−i, θ}] (A11)

Symmetrically, we can simplify the second term on the RHS of Inequality (A9) as∫ θ

¯
θ
π∗(η, s∗j(η))dη

π∗(θ, s∗j(θ))
= θ − E[max{ηj,

¯
θ}|ηj ≤ min{η−j, θ}] (A12)

Combining Equation (A11) with Equation (A12), we can simplify the RHS of
Inequality (A9) as∫ θ

¯
θ
π∗(η, s∗i (η))dη

π∗(θ, s∗i (θ))
−

∫ θ

¯
θ
π∗(η, s∗j(η))dη

π∗(θ, s∗j(θ))

= E[max{ηj,
¯
θ}|ηj ≤ min{η−j, θ}]− E[max{ηi,

¯
θ}|ηi ≤ min{η−i, θ}] (A13)

Next, we consider the LHS of Equation (A9). Since c(.) is non-decreasing (As-
sumption 2S) and qi are mutually independent (Assumption 5), we have for any i, j, θ,

E[c(qi)|qi ≥ max{q−i, q
⋆(θ)}] ≥ E[c(qi)|qj ≥ max{q−j, q

⋆(θ)}] (A14)

Analogously, since 1−F (.)
f(.)

and 1{. ≤ θEi }(θEi − .) are both non-increasing and ηi
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are mutually independent, we have for any i, j, θ,

E
[
1− F (ηi)

f(ηi)
|ηi ≤ min{η−i, θ}

]
≥ E

[
1− F (ηi)

f(ηi)
|ηj ≤ min{η−j, θ}

]
(A15)

E[1{ηi ≤ θEi }(θEi − ηi)|ηi ≤ min{η−i, θ}] ≥ E[1{ηi ≤ θEi }(θEi − ηi)|ηj ≤ min{η−j, θ}]
(A16)

It follows that

E[a(qi)|s∗i (θ)]− E[a(qi)|s∗j(θ)]

= E[a(qi)|qi ≥ max{q−i, q
⋆(θ)}]− E[a(qi)|qj ≥ max{q−j, q

⋆(θ)}]

≥ E[a(qi)− c(qi)|qi ≥ max{q−i, q
⋆(θ)}]− E[a(qi)− c(qi)|qj ≥ max{q−j, q

⋆(θ)}] (By A14)

= E
[
1− F (ηi)

f(ηi)
− ηi|ηi ≤ min{η−i, θ}

]
− E

[
1− F (ηi)

f(ηi)
− ηi|ηj ≤ min{η−j, θ}

]
≥ E[ηi|ηj ≤ min{η−j, θ}]− E[ηi|ηi ≤ min{η−i, θ}] (By A15)
≥ E[max{ηi,

¯
θ}|ηj ≤ min{η−j, θ}]− E[max{ηi,

¯
θ}|ηi ≤ min{η−i, θ}] (By A16)

≥ E[max{ηj,
¯
θ}|ηj ≤ min{η−j, θ}]− E[max{ηi,

¯
θ}|ηi ≤ min{η−i, θ}] (A17)

Combining Inequality (A17) with Equation (A13), we get Inequality (A9).

Finally, we consider the LHS of Inequality (A10).

E[a(qi)|s∗i (θ)]− E[a(qi)|s∗0(θ)]

= E[a(qi)|qi ≥ max{q−i, q
⋆(θ)}]− E[a(qi)|qi ≤ min{q−i, q

⋆(θ)}]

≥ E[a(qi)− c(qi)|qi ≥ max{q−i, q
⋆(θ)}]− E[a(qi)− c(qi)|qi ≤ min{q−i, q

⋆(θ)}]

≥ E[a(qi)− c(qi)− {a(q⋆(θ))− c(q⋆(θ))}|qi ≥ max{q−i, q
⋆(θ)}]

= E
[
1− F (ηi)

f(ηi)
− ηi −

{
1− F (θ)

f(θ)
− θ

}
|ηi ≤ min{η−i, θ}

]
≥ θ − E[ηi|ηi ≤ min{η−i, θ}], (A18)

where the first inequality is similar to (A14) and the third inequality is similar
to (A15).

Combining Inequality (A18) with Equation (A11), we get Inequality (A10).
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Step 3: Again let v(q, θ) = a(q) + θ. We need to show for any θ, θ′ ∈ [
¯
θ, θ̄],

m∑
i=1

Vi(θ) ≥
m∑
i=0

max
0≤j≤m

U(θ′, s∗j(θ
′); θ, s∗i (θ

′))π∗(θ′, s∗i (θ
′))

By Lemma 3 and Step 2 above, we know for any 1 ≤ i ≤ m,

max
0≤j≤m

U(θ′, s∗j(θ
′); θ, s∗i (θ

′)) = max{U(θ′, s∗i (θ
′); θ, s∗i (θ

′)), 0}

Consequently, it suffices to show

m∑
i=1

Vi(θ) ≥ max
0≤j≤m

U(θ′, s∗j(θ
′); θ, s∗0(θ

′))π∗(θ′, s∗0(θ
′))+

m∑
i=1

max{U(θ′, s∗i (θ
′); θ, s∗i (θ

′)), 0}π∗(θ′, s∗i (θ
′))

For θ ≤ θ′ and any 1 ≤ j ≤ m, by Assumption 1S and Step 2 above,

U(θ′, s∗j(θ
′); θ, s∗0(θ

′)) ≤ U(θ′, s∗j(θ
′); θ′, s∗0(θ

′)) ≤ U(θ′, s∗0(θ
′)) = 0

Consequently, max0≤j≤m U(θ′, s∗j(θ
′); θ, s∗0(θ

′))π∗(θ′, s∗0(θ
′)) = 0 and the above inequal-

ity follows from the proof of Theorem 1.

It remains to consider θ > θ′. By Assumption 1S again, U(θ′, s∗i (θ
′); θ, s∗i (θ

′)) ≥
U(θ′, s∗i (θ

′)) ≥ 0 for any 1 ≤ i ≤ m, so it suffices to show

m∑
i=1

Vi(θ) ≥ U(θ′, s∗j(θ
′); θ, s∗0(θ

′))π∗(θ′, s∗0(θ
′)) +

m∑
i=1

U(θ′, s∗i (θ
′); θ, s∗i (θ

′))π∗(θ′, s∗i (θ
′))

for any 1 ≤ j ≤ m, which is equivalent to

m∑
i=1

∫ θ

¯
θ

π∗(η, s∗i (η))dη ≥

θ − θ′ + E[a(qj)|s∗0(θ′)]− E[a(qj)|s∗j(θ′)] +

∫ θ′

¯
θ
π∗(t, s∗j(t))dt

π∗(θ′, s∗j(θ
′))

 π∗(θ′, s∗0(θ
′))

+
m∑
i=1

θ − θ′ +

∫ θ′

¯
θ
π∗(η, s∗i (η))dη

π∗(θ′, s∗i (θ
′))

 π∗(θ′, s∗i (θ
′)) (A19)
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Consider the derivative of the two sides of Equation (A19) with respect to θ, we
have

LHS′(θ) =
m∑
i=1

π∗(θ, s∗i (θ)) ≤ 1 = RHS′(θ)

In other words, it suffices to show Equation (A19) holds for θ = θ̄.

In establishing Inequality (A10) in Step 2, we proved the following inequality: for
any j,

E[a(qj)|s∗j(θ′)]− a(q⋆(θ′)) ≥

∫ θ′

¯
θ
π∗(η, s∗j(η))dη

π∗(θ, s∗j(θ))

Consequently, for any j,∫ θ′

¯
θ
π∗(η, s∗j(η))dη

π∗(θ, s∗j(θ))
− E[a(qj)|s∗j(θ′)] ≤ −a(q⋆(θ′)) (A20)

Combining Inequality (A20) with Inequality (A19) evaluated at θ = θ̄, we know
it suffices to show for any j,

m∑
i=1

∫ θ̄

¯
θ

π∗(η, s∗i (η))dη ≥
[
θ̄ − θ′ + E[a(qj)|s∗0(θ′)]− a(q⋆(θ′))

]
π∗(θ′, s∗0(θ

′))

+
m∑
i=1

θ̄ − θ′ +

∫ θ′

¯
θ
π∗(η, s∗i (η))dη

π∗(θ′, s∗i (θ
′))

 π∗(θ′, s∗i (θ
′)) (A21)

Next, we prove the following inequality: for any j,

a(q⋆(θ′))− E[a(qj)|s∗0(θ′)] ≥
∫ θ̄

θ′
π∗(η, s0(η))dη

π∗(θ′, s∗0(θ
′))

(A22)

Let ηj ∼ F̃ [θLj , θ
H
j ] be as defined in Step 2, that is, q̃(ηj) = qj. We have

a(q⋆(θ′))− E[a(qj)|s∗0(θ′)]

≥ a(q⋆(θ′))− c(q⋆(θ′))− E[a(qj)− c(qj)|max
i

qi ≤ q⋆(θ′)]
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= E
[
1− F (θ′)

f(θ′)
− θ′ − 1− F (ηj)

f(ηj)
+ ηj|θ′ ≤ min{ηj, η−j}

]
≥ E[ηj − θ′|θ′ ≤ min{ηj, η−j}]

=

[
1− F̃−j(θ

′)
] [∫ θHj

θ′ (ηj − θ′)dF̃j(ηj)
]

π∗(θ′, s∗0(θ
′))

=

[
1− F̃−j(θ

′)
] [∫ θHj

θ′ (1− F̃j(ηj))dηj

]
π∗(θ′, s∗0(θ

′))

≥

∫ θHj
θ′

[
1− F̃j(ηj)

] [
1− F̃−j(ηj)

]
dηj

π∗(θ′, s∗0(θ
′))

=

∫ θHj
θ′ π∗(η, s0(η))dη

π∗(θ′, s∗0(θ
′))

, (A23)

where all of the three inequalities are by Assumption 5 (mutual independence) and
the fact that qj ≤ q⋆(θ′) and ηj ≥ θ′ under signal s∗0(θ′).

For θHj ≥ θ̄, we have
∫ θHj

θ′ π∗(η,s0(η))dη

π∗(θ′,s∗0(θ
′))

≥
∫ θ̄
θ′ π

∗(η,s0(η))dη

π∗(θ′,s∗0(θ
′))

.

For θHj < θ̄, π∗(θ, s0(θ)) = 0 for any θ ∈ [θH , θ̄], so
∫ θHj

θ′ π∗(η,s0(η))dη

π∗(θ′,s∗0(θ
′))

=
∫ θ̄
θ′ π

∗(η,s0(η))dη

π∗(θ′,s∗0(θ
′))

.

Together with Inequality (A23), we get Inequality (A22).

Finally, applying Inequality (A22) to Inequality (A21), we know it suffices to show

∫ θ̄

¯
θ

[
m∑
i=0

π∗(η, s∗i (η))

]
dη ≥ (θ̄ − θ′)

m∑
i=0

π∗(θ′, s∗i (θ
′)) +

∫ θ′

¯
θ

[
m∑
i=0

π∗(η, s∗i (η))

]
dη,

which holds trivially because
∑m

i=0 π
∗(η, s∗i (η)) = 1 for any η ∈ [

¯
θ, θ̄].

Proof of Proposition 2: Since the lowest type buyer would never purchase anything
under this menu, V (

¯
θ) = 0. By the proof of Theorem 1, it suffices to show the

optimal choice of the buyer given menu (E∗, pi = E[v(qi, θ⋆)|s∗i ]) coincides with the
profit-maximizing allocation for every quality profile realization.

Since there is only one experiment, (ICom) is irrelevant. We first show (IR) is
respected at the profit-maximizing allocation under Assumptions 1 through 4.
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Since v(q, .) is strictly increasing in θ for any q, we have

E[v(qi, θ)|s∗i ]− E[v(qi, θ⋆)|s∗i ] ≥ 0 for θ > θ⋆

E[v(qi, θ)|s∗i ]− E[v(qi, θ⋆)|s∗i ] ≤ 0 for θ ≤ θ⋆

Or the set of (IR) constraints is respected at the profit-maximizing allocation.

Next we show if Assumptions 5 also holds and v(q, θ) has non-decreasing differ-
ences in (q, θ), then (ICpr) is respected at the profit-maximizing allocation.

For θ > θ⋆ and any i, j, we have

E[v(qi, θ)|s∗i ]− E[v(qi, θ⋆)|s∗i ]

≥ E[v(qj, θ)|s∗i ]− E[v(qj, θ⋆)|s∗i ] (Non-decreasing differences)
≥ max

{
E[v(qj, θ)|s∗i ]− E[v(qj, θ⋆)|s∗j ], 0

}
(Independence)

For θ < θ⋆ and any i, j, we have

E[v(qj, θ)|s∗i ]− E[v(qj, θ⋆)|s∗j ]

≤ E[v(qj, θ)|s∗j ]− E[v(qj, θ⋆)|s∗j ] (Independence)
≤ 0 (Monotonicity in θ)

In other words, the set of (ICpr) constraints is respected at the profit-maximizing
allocation.

Proof of Proposition 3: We prove the proposition in two steps: first, we establish
the “only if” part; second, we show when v(q, θ⋆(q)) ≡ v⋆, menu

(
Efull, pi = v⋆

)
maximizes the seller’s profit subject to (ICom) and (IR). Moreover, this menu achieves
the same profit when subject to (ICpr) and (IR).

Step 1: We first show q⋆(θ) is strictly decreasing and continuous on [θ⋆(maxi q̄i), θ
⋆(qE)].

Take any θ⋆(maxi q̄i) ≤ θ < θ′ ≤ θ⋆(qE). Recall the virtual type φ(q, θ) =

v(q, θ) − c(q) − 1−F (θ)
f(θ)

vθ(q, θ). By Assumptions 1 and 2, φ(., θ) is continuous in q.
Together with the definition of qE, we must have φ(q⋆(θ), θ) = 0. Since φ(q, .) is
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strictly increasing in θ, we have φ(q⋆(θ), θ′) > φ(q⋆(θ), θ) ≥ 0. By continuity in q

again, we have q⋆(θ) > q⋆(θ′).

On the other hand, φ(q, .) is continuous and strictly increasing in θ, so by the
implicit function theorem (Kumagai, 1980), θ⋆(.) is continuous is q. Together with
the assumption that θ⋆(.) is strictly decreasing, we have q⋆(.) is continuous in θ.

Since pi cannot depend on the signal realization, by an analogous argument to the
proof of Lemma 2, it is without loss to consider Ẽ(θ) = E∗(θ). For simplicity, we rank
the products according to the (q̄i,

¯
qi) lexicographic order, that is, q̄1 ≥ q̄2 ≥ · · · ≥ q̄m

and if q̄i = q̄j,
¯
qi ≥

¯
qj if i < j.

Next we show q⋆(
¯
θ) ≥ q̄1. Suppose to the contrary that q⋆(

¯
θ) < q̄1, which is

depicted in Figure 3. Let k = max{j : q̄j > q⋆(
¯
θ)}. By the proof of Theorem 1,

for menu ({E∗(θ)}, pi) to maximize the seller’s expected revenue subject to (ICom)
and (IR), we must have V (

¯
θ) = 0, where V (

¯
θ) represents the expected utility of

buyer type
¯
θ. Consequently, we must have min1≤i≤k pi > v(q⋆(

¯
θ),

¯
θ). For instance, if

pi ≤ v(q⋆(
¯
θ),

¯
θ), then U(

¯
θ, s∗i (¯

θ)) = E[v(qi, θ)|s∗i (¯θ)]− pi > 0, which implies V (
¯
θ) > 0

(the buyer has to option to only purchase under signal realization s∗i (¯
θ)).

Consider the incentive of buyer type θ >
¯
θ. Recall that V (

¯
θ; θ) represents the

expected utility of a type θ buyer, when they report and act as being type
¯
θ. We

have

V (θ)− V (
¯
θ; θ) =

k∑
i=1

∫
qi≥max q−i,q⋆(θ)≤qi≤q⋆(

¯
θ)

[v(qi, θ)− pi] dG(q)

Since min1≤i≤k pi > v(q⋆(
¯
θ),

¯
θ), q⋆(.) is continuous in θ and v(., .) is continuous in

q and θ, we must have V (
¯
θ + ε) − V (

¯
θ;
¯
θ + ε) < 0 for ε > 0 small, which violates

(ICom).
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¯
q1

q̄1

q⋆(
¯
θ)

Figure 3: Proof of q⋆(θ) ≥ q̄1

Next we show for any two products i, j such that q̄i, q̄j > qE, we must have pi = pj.
Consider the first two products. If q̄2 ≤ qE, then there is nothing to prove, because
only product 1 will be allocated at the optimum. It remains to consider the two
scenarios depicted in Figure 4.

• Scenario 1: q̄1 = q̄2.

By the above argument, θ⋆(q̄1 − ε) >
¯
θ for any ε > 0. For the posted mech-

anism to maximize the seller’s profit subject to (ICom) and (IR), we must
have V (θ⋆(q̄1)) = 0, which implies p1 = p2 = v(q̄1, θ

⋆(q̄1)). If min{p1, p2} <

v(q̄1, θ
⋆(q̄1)), then V (θ⋆(q̄1)) > 0. If max{p1, p2} > v(q̄1, θ

⋆(q̄1)), then type
θ⋆(q̄1) would not purchase under signal realization s∗1(θ

⋆(q̄1)) or s∗2(θ
⋆(q̄1)).

• Scenario 2: q̄1 > q̄2. By an analogous to Scenario 1, we must have p1 =

v(q̄1, θ
⋆(q̄1)). Next we argue v(q, θ⋆(q)) = p1 for any q ∈ [q̄2, q̄1].

Take any θ⋆(q̄2) ≥ θ > θ′ ≥ θ⋆(q̄1). (ICom) implies

V (θ) ≥ V (θ′; θ) and V (θ; θ′) ≥ V (θ′)

Notice q1 > qj for any j when q1 > q̄2, so∫
q⋆(θ)≤q1≤q⋆(θ′)

(v(q1, θ)− p1)dG1(q1) ≥ 0 ≥
∫
q⋆(θ)≤q1≤q⋆(θ′)

(v(q1, θ
′)− p1)dG1(q1)

In particular, v(q⋆(θ′), θ) ≥ p1 ≥ v(q⋆(θ), θ′). Since q⋆(.) is continuous, for
θ → θ′, we have v(q⋆1(θ), θ) = p1. Since q⋆(.) is strictly decreasing in this range,
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we have v(q, θ⋆(q)) = p1 for any q ∈ [q̄2, q̄1].

Now we argue that p2 = v(q̄2, θ
⋆(q̄2)). If p2 > v(q̄2, θ

⋆(q̄2)), then type θ⋆(q̄2)

would not purchase product 2 under signal realization s∗2(θ
⋆(q̄2)). If p2 <

v(q̄2, θ
⋆(q̄2)), then V (θ⋆(q̄2) − ε; θ⋆(q̄2)) > V (θ⋆(q̄2)) for ε > 0 small. It fol-

lows that p1 = v(q̄2, θ
⋆(q̄2)) = p2.

¯
q1

q̄1

¯
q2

q̄2

(a) Scenario 1

¯
q1

q̄1

¯
q2

q̄2

(b) Scenario 2

Figure 4: Proof of p1 = p2

Let k = max{i : q̄i > qE}. Inductively, we can show pi = pj = p for any
1 ≤ i, j ≤ k.

Finally, we consider any θ⋆(qE) ≥ θ > θ′ ≥ θ⋆(q̄1). (ICom) implies

V (θ) ≥ V (θ′; θ) and V (θ; θ′) ≥ V (θ′)

Equivalently,

k∑
i=1

∫
qi≥max q−i,q⋆(θ)≤qi≤q⋆(θ′)

v(qi, θ)dG(q)

≥ p ·
k∑

i=1

[π∗(θ, s∗i (θ))− π∗(θ′, s∗i (θ
′))]

≥
k∑

i=1

∫
qi≥max q−i,q⋆(θ)≤qi≤q⋆(θ′)

v(qi, θ
′)dG(q)

In particular, v(q⋆(θ′), θ) ≥ p ≥ v(q⋆(θ), θ′). Letting θ → θ′, we have v(q⋆(θ), θ) = p
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by continuity of q⋆(.). By construction, the range of q⋆(θ) is [qE,maxi q̄i]. Moreover,
θ⋆(.) is continuous and strictly decreasing, so v(q, θ⋆(q)) = p for any q ∈ [qE,maxi q̄i].

Step 2: Similar to the proof of Proposition 2, it suffices to show V (
¯
θ) = 0 and the

optimal choice of the buyer under menu (Efull, pi = v⋆) coincides with the profit-
maximizing allocation for every quality profile realization. Specifically, we need to
show for any q ∈ Q∗

i = {q ∈ Q : qi ≥ maxj<i qj, qi > maxj>i qj}, the buyer would
optimally purchase product i if and only if θ > θ⋆(qi).

First notice if qi < q⋆(θ̄), then qE = q⋆(θ̄) and qi < qE. We indeed have

v(qi, θ)− v⋆ ≤ v(qi, θ̄)− v⋆ = v(qi, θ̄)− v(qE, θ̄) < 0

or no buyer would purchase any product.

It remains to consider the case of qi ≥ q⋆(θ̄). For any θ > θ⋆(qi) and i, j, we have

v(qi, θ)− v⋆ ≥ v(qj, θ)− v⋆ and

v(qi, θ)− v⋆ ≥ v(qi, θ
⋆(qi))− v⋆ = 0,

where the first inequality is by the definition of Q∗
i .

For any θ < θ⋆(qi) and i, j, we have

v(qj, θ)− v⋆ ≤ v(qi, θ)− v⋆ < v(qi, θ
⋆(qi))− v⋆ = 0

To conclude, under Assumptions 1 through 4, the set of (IR) and (ICpr) constraints
are respected at the profit-maximizing allocation.

Proof of Proposition 4: We prove the proposition in two steps: first, we show if
θ⋆(q) is not constant, then menu (Eno, p = E[v(q, θ⋆)]) does not maximize the seller’s
expected profit, subject to (ICom) and (IR); second, we show if θ⋆(q) = θ⋆, then menu
(Eno, p = E[v(q, θ⋆)]) maximizes the seller’s expected profit, subject to (ICom) and
(IR). Moreover, this menu achieves the same profit, when subject to (ICpr) and (IR)

Step 1: Since θ⋆(q) is not constant, we must have θ⋆(q̄) < θ⋆(
¯
q). By Step 1 of
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the proof of Proposition 3, for any θ⋆(q̄) ≤ θ < θ′ ≤ θ⋆(
¯
q), we have q⋆(θ) > q⋆(θ′).

Under menu (Eno, p = E[v(q, θ⋆)]), the buyer’s surplus from purchase is given by
E[v(q, θ)]− E[v(q, θ⋆)], so the buyer’s optimal choice induces the following allocation

xno(θ, q) =

1 if θ > θ⋆

0 otherwise
,

for any q ∈ [
¯
q, q̄].

By Theorem 1, this allocation must be different from the profit-maximizing alloca-
tion for almost all θ ∈ (θ⋆(q̄), θ⋆(

¯
q)) and a positive measure of q ∈ [

¯
q, q̄]. Let EP(Eno)

be the expected profit from menu (Eno, p = E[v(q, θ⋆)]) and let EP(E∗(θ)) be the
expected profit characterized in Theorem 1. Similar to the proof of Proposition 1, we
have EP(Eno) < EP(E∗(θ)).

Step 2: When θ⋆(q) = θ⋆, we know

q⋆(θ) =

q̄ if θ ≤ θ⋆

¯
q if θ > θ⋆

Consequently, xno(θ, q) = x∗(θ, q) for almost all θ ∈ [
¯
θ, θ̄] and q ∈ [

¯
q, q̄]. Moreover,

the expected utility of the lowest type V (
¯
θ) = 0. By the proof of Theorem 1, we have

EP(Eno) = EP(E∗(θ)).

Finally, Sno = {s0} is a singleton, so (ICpr) is satisfied whenever (IR) is respected.
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